Detection of spin excitation transfer in a 2D electron system by photoluminescence of multi-particle exciton complexes
We demonstrate that non-equilibrium spin excitations drift to macroscopically large distances in
a 2D electron gas (symmetrically doped GaAs/AlGaAs quantum well) in a quantizing magnetic
field at filling factor $\nu $ = 2. The effect is induced by low-temperature photoexcitation of a dense
ensemble of long-lived ($\sim 1 $ ms) spin excitations − cyclotron spin-flip magnetoexcitons. The spin
excitation is a bound state of an electron at the first Landau level and a Fermi-hole at the zeroth
Landau level with a total spin S = 1 [1-3]. Direct photoexcitation and radiative annihilation of
such excitations are forbidden (“dark” excitons), yet, their binding energy and spin structure are
reliably established by inelastic light scattering spectra [4, 5]. Recently, we were able to measure
the dark exciton density and relaxation rate by newly developed technique – photo-induced
resonant light reflection [6]. At the temperatures below 1 K, we discovered the condensate-like
behavior of the dense exciton ensemble [7]. Furthermore, these spin excitations modify
photoluminescence spectrum by binding to a photo-excited valence hole: an allowed radiative
recombination channel of three-particle complexes gets active [8]. Our paper presents
observation of spin exciton drift to the distance up to 200 μm. This unique phenomenon was
experimentally studied utilizing spatial separation of pump (photoexcitation) and probe
(photoluminescence detection) laser spots. Enhancement of the multi-particle complexes in
photoluminescence spectrum was observed far away from the pump area. Both pump intensity
and temperature dependencies correlate well with the phase diagram of dark exciton
condensation [7]. Time dependence of the spin drift rate in a 2D electron gas is the subject of our
near-future research.
1. Yu.A. Bychkov, S.V. Iordanskii, and G.M. Eliashberg, Two-dimensional electrons in a strong
magnetic field, JETP Letters 33, 143 (1981).
2. I.V. Lerner and Yu.E. Lozovik, Two-dimensional electron-hole system in a strong magnetic field as an
almost ideal exciton gas, Sov. Phys. JETP 53, 763 (1981).
3. C. Kallin and B.I. Halperin, Excitations from a filled Landau level in the two-dimensional electron gas,
Phys. Rev. B 30, 5655 (1984).
4. L.V. Kulik, I.V. Kukushkin, S. Dickmann, V.E. Kirpichev, A.B. Van'kov, A.L. Parakhonsky, J.H.
Smet, K. von Klitzing, and W. Wegscheider, Cyclotron spin-flip mode as the lowest-energy excitation of
unpolarized integer quantum Hall states, Phys. Rev. B 72, 073304 (2005).
5. L.V. Kulik, S. Dickmann, I.K. Drozdov, A.S. Zhuravlev, V.E. Kirpichev, I.V. Kukushkin, S. Schmult,
and W. Dietsche, Antiphased cyclotron-magnetoplasma mode in a quantum Hall system, Phys. Rev. B 79,
121310 (2009).
6. L.V. Kulik, A.V. Gorbunov, A.S. Zhuravlev, V.B. Timofeev, S.M. Dickmann, and I.V. Kukushkin,
Super-long life time for 2D cyclotron spin-flip excitons, Sci. Rep. 5, 10354 (2015).
7. L.V. Kulik, A.S. Zhuravlev, S. Dickmann, A.V. Gorbunov, V.B. Timofeev, I.V. Kukushkin, and S.
Schmult, Magnetofermionic condensate in two dimensions, Nature Commun. 7, 13499 (2016).
8. A.S. Zhuravlev, V.A. Kuznetsov, L.V. Kulik, V.E. Bisti, V.E. Kirpichev, and I.V. Kukushkin,
Artificially Constructed Plasmarons and Plasmon-Exciton Molecules in 2D Metals, Phys. Rev. Lett. 117,
196802 (2016).
Gorbunov A.V., Kulik L.V., Kuznetsov V.A., Zhuravlev á.S.,
Larionov A.V., Timofeev V. B., Kukushkin I.V.
JETP Letters 106, issue 10 (2017)