| |||||||||
|
Faraday Waves and Vortices on the Surface of Superfluid He-II.
Created by , 2017-08-01 14:48:02
Well-known Faraday waves can be parametrically generated on a free surface of ordinary (classical) fluids such as water or on superfluid helium He-II surface when a sample cell is vibrated vertically. Standing-wave patterns appear on the surface, and their frequencies are one-half the driving frequency. The acceleration threshold for the parametric excitation of Faraday waves on the surface of water is near an order of magnitude higher than on the surface of He-II at the same frequencies [1]. Generation of vorticity by interacting nonlinear surface waves has been predicted theoretically in a number of papers [2, 3] and generation of vortices by noncollinear gravity waves on a water surface has been observed experimentally [4].Our study has shown that classical 2-D vortices can be generated by Faraday waves on the surface of superfluid He-II also, more over one can observe formation of the vortex lattice in addition to the wave lattice on the surface of He-II in a rectangular cell. Combined with predictions [5] that the sharpest features (about nm sizes) in the cell walls can induce nucleation of quantum vortex filaments and coils on the interface and formation a dense turbulent layer of quantum vortices near the solid walls with a nonclassical average velocity profile which continually sheds small vortex rings into the bulk of vibrating He-II, this opens up new prospects for studying the properties of a quantum liquid and turbulent phenomena on the surface and in bulk of supefluid liquids.
[1] Haruka Abe, Tetsuto Ueda, Michihiro Morikawa, Yu Saitoh, Ryuji Nomura, Yuichi Okuda, Faraday instability of superfluid surface, Phys. Rev. E 76, 046305 (2007).
Levchenko A.A., Mezhov-Deglin L. P., Pel’menev A.A. JETP Letters 106, issue 4 (2017)
|
||||||||