| |||||||||
|
Helical edge transport in the presence of a magnetic impurity
Created by , 2017-10-25 11:23:02
Two-dimensional topological insulators are have attracted much recent interest since they feature helical edge states inside their band gap [1,2]. In the absence of time-reversal symmetry breaking, spin-momentum locking prohibits elastic backscattering of these helical states, i.e., the helical edge is a realization of an ideal transport channel with conductance equal to e2/h. However, this theoretical prediction was not confirmed by experiments on HgTe/CdTe [3-6] and InAs/GaSb [7,8] quantum wells. The time-symmetric interaction of the helical states with a "quantum magnetic impurity'' (an impurity which has its own quantum dynamics) is a leading candidate for explaining these experiments. In spite of recent theoretical studies of this problem [9-14], several key questions has not been addressed in details. We study theoretically the modification of the ideal current-voltage characteristics of the helical edge in a two-dimensional topological insulator by weak scattering off a single magnetic impurity. As a physical realization of such a system we have in mind the (001) CdTe/HgTe/CdTe quantum well (QW) with a Mn impurity that possesses spin S=5/2. Contrary to previous works, we allow for a general structure of the matrix describing exchange interaction between the edge states and the magnetic impurity. For S=1/2 we find an analytical expression for the backscattering current at arbitrary voltage. For larger spin, S>1/2, we derive analytical expressions for the backscattering current at low and high voltages. We demonstrate that the differential conductance may exhibit a non-monotonous dependence on the voltage with several extrema. [1] X.-L. Qi, S.-C. Zhang, Topological insulators and superconductors, Rev. Mod. Phys. 83, 1057 (2011). [2] M. Z. Hasan, C. L. Kane, Colloquium: Topological insulators, Rev. Mod. Phys. 82, 3045 (2010). [3] M. Konig, S. Wiedmann, C. Brune, A. Roth, H. Buhmann, L. W. Molenkamp, X.-L. Qi, S.-C. Zhang, Quantum spin Hall insulator state in HgTe quantum wells, Science 318, 766 (2007) [4] K. C. Nowack, E. M. Spanton, M. Baenninger, M. Konig, J. R. Kirtley, B. Kalisky, C. Ames, P. Leubner, C. Brune, H. Buhmann, L. W. Molenkamp, D. Goldhaber-Gordon, K. A. Moler, Imaging currents in HgTe quantum wells in the quantum spin Hall regime, Nat. Mater. 12, 787 (2013). [5] G. Grabecki, J. Wrobel, M. Czapkiewicz, L. Cywinski, S. Gieratowska, E. Guziewicz, M. Zholudev, V. Gavrilenko, N. N. Mikhailov, S. A. Dvoretski, F. Teppe, W. Knap, T. Dietl, Nonlocal resistance and its fluctuations in microstructures of band-inverted HgTe/(Hg,Cd)Te quantum wells, Phys. Rev. B 88, 165309 (2013). [6] G. M. Gusev, Z. D. Kvon, E. B. Olshanetsky, A. D. Levin, Y. Krupko, J. C. Portal, N. N. Mikhailov, S. A. Dvoretsky, Temperature dependence of the resistance of a two-dimensional topological insulator in a HgTe quantum well, Phys. Rev. B 89, 125305 (2014). [7] E. M. Spanton, K. C. Nowack, L. Du, G. Sullivan, R.-R. Du, K. A. Moler, Images of edge current in InAs/GaSb quantum wells, Phys. Rev. Lett. 113, 026804 (2014). [8] L. Du, I. Knez, G. Sullivan, R.-R. Du, Observation of quantum spin Hall states in InAs/GaSb bilayers under broken time-reversal symmetry, Phys. Rev. Lett. 114, 096802 (2015). [9] J. Maciejko, Ch. Liu, Y. Oreg, X.-L. Qi, C. Wu, S.-C. Zhang, Kondo effect in the helical edge liquid of the quantum spin Hall state, Phys. Rev. Lett. 102, 256803 (2009). [10] Y. Tanaka, A. Furusaki, K. A. Matveev, Conductance of a helical edge liquid coupled to a magnetic impurity, Phys. Rev. Lett. 106, 236402 (2011). [11] J. I. Vayrynen, M. Goldstein, L. I. Glazman, Helical edge resistance introduced by charge puddles, Phys. Rev. Lett. 110, 216402 (2013). [12] J. I. Vayrynen, M. Goldstein, Y. Gefen, L. I. Glazman, Resistance of helical edges formed in a semiconductor heterostructure, Phys. Rev. B 90, 115309 (2014). [13] V. Cheianov, L. I. Glazman, Mesoscopic fluctuations of conductance of a helical edge contaminated by magnetic impurities, Phys. Rev. Lett. 110, 206803 (2013). [14] L. Kimme, B. Rosenow, A. Brataas, Backscattering in helical edge states from a magnetic impurity and Rashba disorder, Phys. Rev. B 93, 081301 (2016).
Kurilovich P.D. , Kurilovich V.D., Burmistrov I.S. , Goldstein M. JETP Letters 106 (9) (2017) |
||||||||