| |||||||||
|
Radio-to-gamma-ray Synchrotron and Neutrino Emission from Proton-proton Interactions in Active Galactic Nuclei
Created by , 2020-12-29 13:36:02
Seven years ago, IceCube neutrino telescope has discovered neutrinos of Peta-electronvolt energies coming from yet unidentified astronomical sources. Active Galactic Nuclei (AGN) powered by supermassive black holes ejecting relativistic jets are considered as possible source of the IceCube astrophysical neutrino signal. Direct verification of this hypothesis is however difficult because of the low statistics of the neutrino signal and moderate angular resolution of the IceCube telescope.
Interactions of high-energy protons and atomic nuclei that result in production of astrophysical neutrinos in AGN inevitably produce also gamma-rays, electrons and positrons that initiate electromagnetic cascade releasing its energy into Giga-electronvolt (GeV) to Tera-electronvolt (TeV) range. Thus, it is natural to expect that the sources of astrophysical neutrinos have GeV-TeV gamma-ray counterparts. However, contrary to expectations, arrival directions of astrophysical neutrinos detected by IceCube do not correlate with positions of brightest gamma-ray emitting AGN detected by Fermi LAT gamma-ray telescope. At the same time, surprisingly, recent analysis of correlation between neutrino arrival directions and positions of AGN brightest in the radio band by Plavin et al. (2020) has revealed significant correlation.
|
||||||||