| |||||||||
|
Search for high-energy neutrinos from GW170817 with the Baikal-GVDneutrino telescope
Created by , 2018-11-22 23:08:02
A gravitational wave signal, GW170817, from a binary neutron star merger has been recordedby the Advanced LIGO and Advanced Virgo observatories on August 17, 2017 [1]. The deep underwater neutrino telescope Baikal Gigaton Volume Detector (Baikal-GVD) is currently under construction in Lake Baikal [2].In this work we present results of searches for high-energy neutrinos in coincidence with GW170817 by Baikal-GVD. Two different time windowswere used for the search. First, a ±500 s time window around the merger was used to search for neutrinos associated with prompt and extended gamma-ray emission. Second, a 14-day time window following the GW detection, to cover predictions of longer-lived emission processes. Since background events from atmospheric muons and neutrinos can be significantly suppressed by requiring time and space coincidence with the GW signal, relatively weak cuts can be used for neutrino selection. For the search for neutrino events within a ±500 s window around the GW event, 731 events were selected, which comprise >5 hit light sensors at>2 hit strings. After applying cascade reconstruction procedures and dedicated quality cuts, two events were selected. Finally, requiring directional coincidence with GW170817y< 20° no neutrino candidates survived.The absence of neutrino candidates associated with GW170817 in the ±500 s window as well as in 14 day window allows to constrain the fluence of neutrinos from GW170817. Assuming an E-2 spectrum single-flavor differential limits to the spectral fluence in bins of one decade in energy have been derived. In the range from 5 TeV to 10 PeV a 90% CL upper limit is 5.2×(E/GeV)-2 GeV-1cm-2for ±500 s time window search. The corresponding upper limit to the spectral fluencefor 14 day search window is 9.0×(E/GeV)-2 GeV-1cm-2over the same energy range.
A.D. Avrorin, A.V. Avrorin, V.M. Aynutdinov et.al. (Baikal Collaboration) JETP Letters 108, issue 12 (2018)
|
||||||||