Home
For authors
Submission status

Current
Archive
Archive (English)
Search
Superradiance Properties of a Suspension of Composite
Created by , 2017-07-04 16:35:02

Nanoscale integration of organic and metallic particles is expected to open up new opportunities for the design high-performance nanoscale devices.  Optimization of heterostructures requires experimental and theoretical analysis of their specific physical properties.  Nanosystem consisting in gold
nanospheres  covered by silica shell impregnated with the organic dye molecules  comes into focus as a possible plasmonic based
nanolaser, i.e. "spaser" [1]. Depending on the distance between the emitters and metal there are possible various phenomena [2,3].
In this paper we experimentally studied the characteristics of a suspension of  spasers at the temperatures $T_N=77.4K,T_R=293K$. It was found  that the
system possesses characteristics of a laser medium. The S-shaped dependence of the radiation intensity and the compression of the lasing line with increase of the pumping power were observed. Ten-fold increase of the intensity of the radiation generated by the medium and line narrowing with  temperature change $T_R\to T_N$ was found. The experimental results were compared with a numerical simulation of a spaser model consisting of 20 two-level media and a metallic nanosphere. The temperature effects were modeled by the introduction of the Markov process.

It was found that observed effects can be explained by means of the feedback caused by the nonlinear interaction of polarizations with their total reflection in the metallic core. At low temperatures  Bloch vectors related with two-level systems form an analog of a ferromagnetic state. With increasing fluctuations, antiferromagnetic states are formed along with the desynchronization of ferromagnetic one. These properties allows us to explain the observed changes in the intensity of the and line form of laser generation with temperature.

Experimental and numerical results of the work demonstrate that the synchronization of the polarization of dye molecules caused by inverse nonlinear coupling yields an analog of plasmon-polariton superradiance.

1. D.J. Bergman  and  M.I. Stockman, Phys.Rev.Lett. 90, 027401 (2003).

2.  M. Haridas et al, J. Appl. Phys.114, 064305 (2013).

3. M. Praveena et al, Phys. Rev. B  92, 235403 (2015).

                                                               A. S. Kuchyanov, A.A. Zabolotskii, Plekhanov A.I.

                                                                                                JETP Letters 106 (2) (2017)

Back to all records