| |||||||||
|
Terahertz cyclotron photoconductivity in strongly unbalanced 2D electron-hole system
Created by , 2018-07-23 14:17:02
Cyclotron resonance photoconductivity (CRP) is one of the power tools for study of the interaction of two-dimensional particles with electromagnetic radiation especially after the discovery of microwave induced magnetoresistance oscillations [1] that have created a lot of questions in the area, where, after the issue of the well-known review [2], it seemed that everything was clear. In this work, we report on the observation of CRP of two-dimensional (2D) electrons under very unusual conditions – in 2D semimetal in that their number (109 – 1010) cm-2 is much (from one to three orders) less than number of holes. So for the first time the cyclotron resonance have been observed from the electrons moving through the hole liquid, which strongly screens an impurity scattering potential and an electron-electron interaction. At first glance, it is impossible to observe CRP in this situation because of a very small absorption rate; however it has been detected in our experiments. Moreover, at 432 µm wavelength no decreasing of the CRP amplitude was observed when electron density decreased from 1010 cm2 to 109 cm2 . The experiments demonstrate that interaction of 2D electrons in semiconductor structures with the high frequency electromagnetic field is not so simple problem. It is likely there is a strong field enhancement in 2D system due to many particle effects in the spirit of a recent theory work [3]. Anyway, the further study of this phenomenon is of undoubted interest. [1] I. A. Dmitriev, A. D. Mirlin, D. G. Polyakov, and M. A. Zudov, Rev. Mod. Phys. 84, 1709 (2012). [2] T. Ando, A. B. Fowler, and F. Stern, Rev. Mod. Phys. 54, 673 (1982). [3] A. D. Chepelianskii, D. L. Shepelyansky, Phys. Rev. B 97, 125415 (2018). Z.D. Kvon JETP Letters 108, issue 4 (2018) |
||||||||