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In the work [1] a formalism for calculation of
the processes of the type a → bc in amorphous
media at high energies (when the energies of
the particles a, b and c are much bigger than
their masses) induced by multiple scattering in
the medium has been developed. In calculating of
such processes one faces a problem of accounting
for the Landau-Pomeranchuk-Migdal (LPM) [2, 3]
effect related to large coherence length for a → bc
transition at high energies. In this regime a → bc
process involves interactions with many medium
constituents. The problem becomes especially
complicated in the non-abelian case when all the
particles undergo multiple rescatterings in the
medium. The approach [1] is applicable both in
QED for ordinary materials (for instance, for the
photon emission from electrons e → γe) and in
QCD (for instance, for the gluon emission from
fast quarks q → gq in a hot quark-gluon plasma
or in a cold nuclear matter). The formalism is
valid for any magnitude of the LPM suppression
of the cross section. It accounts for accurately
the Coulomb effects in multiple scattering and
works both for infinite and finite-size matter. The
spectrum in the Feynman variable xb = Eb/Ea

has been expressed through the Green function of
a two dimensional Schrödinger equation with an
imaginary potential. This Green function describes
the in-medium evolution on the light-cone t =
z (z is coordinate along the momentum of the
initial fast particle a) in the transverse plane of
the fictitious system bcā from point-like to point-
like state. In the bcā system the particle ā is
located at the center of mass of the bc pair. In
the above Schrödinger equation the coordinate z
plays the role of time, and the Schrödinger mass
equals xb(1 − xb)Ea, which is the reduced mass
of the system bc in the impact parameter plane
(where the role of masses are played by the particle
energies). The imaginary potential is proportional
to the product of the matter density and the
cross section for interaction with a medium particle
of the bcā system. The derivation is based on
the representation of the wave function of each
fast particle in the form of the product of the
plane wave exp [E(t− z)] and a slowly varying
“transverse” wave function φ(~ρ, z), which satisfies
a two dimensional Schrödinger equation with mass
M = E (E is the energy of the particle). Each
transverse wave function has been written through

the relevant Green function. It allows one, after
integrating over the variable t − z in each vertex
(which leads to the mass conservation Ma =
Mb + Mc in the vertexes a → bc), to obtain
the diagrammatic representation of the amplitudes
in terms of the transverse propagators. Making
use of the Feynman path integral representation
for the transverse propagators one can obtain the
cross section of the process a → bc in a path
integral form in the transverse plane on the light-
cone t = z. Of course, the functional integral for
the amplitude cannot be calculated analytically.
However, it turned out that for the cross section,
after averaging over the medium states, all the
functional integrations, except for the integration
over the transverse distance between b and c,
can be taken analytically similarly to the case
of the functional integral for the electron density
matrix [4]. And the remaining integral over the
relative transverse vector ~ρb − ~ρc gives the above
mentioned Green function for the system bcā. An
important feature of the obtained diagrammatic
representation for the cross section is that for
the QCD case the calculation of the color factors
becomes trivial.

An analysis of the LPM effect and the parton
energy loss in QCD matter is of great interest
both from general theoretic and phenomenological
point of view. At the time of its publication the
work was of special interest due to the interest
in the radiative parton energy loss in the quark-
gluon plasma, which was expected to be produced
in future experiments on heavy ion collisions
at RHIC and LHC. It has been expected that
the energy loss of the fast quarks and gluons
produced in hard processes as they traverse the
quark-gluon plasma would suppress the hadron
spectra at high transverse momenta (similarly to
the reduction of radiation in a concrete nuclear
reactor containment). Subsequently, it turned out
to be case, and analyzing of the suppression of
the high-pT spectra (usually called “jet quenching”)
became one of the major methods in diagnostics
of the QCD matter in heavy ion collisions at
RHIC and LHC. The analysis [1] turned out
to be the first consistent calculation of the
radiative energy loss in QCD matter. The previous
attempts [5–7] to calculate them, even in the soft
gluon approximation, have not been successful.
Practically simultaneously with [1] the induced
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gluon radiation in QCD matter was addressed in
works [8], where only the regime of strong LPM
effect and in the soft gluon approximation was
studied. However, later on, it became clear that
the calculations [8] contain conceptual errors, that
were subsequently corrected in [9].

The approaches to the radiative energy loss
[10, 11] developed after the work [1] are less
general. The formalism [10] accounts for only few
first rescatterings of the fast partons in the soft
gluon approximation, and applies only to a small
size plasma. The formulas of [10] can be obtained
from the formalism [1] by a simple expansion
in the medium density. The formulas of [11],
derived within the thermal field theory in the
momentum representation for an infinite plasma,
can be reproduced within the formalism [1] using
the imaginary potential evaluated through the
gluon polarization tensor [12]. However, contrary
to [11] the approach [1] works also for a finite
size plasma with a varying density. Thus today the
formalism [1] still appears to be the most powerful
method for calculation of the radiative energy loss
in the QCD matter.

It worth noting that at the time of carrying
out the analysis [1] there was also considerable
interest to the LPM effect in QED stimulated

by the first high-precision measurement of the
effect for the photon emission from electrons at
SLAC [13]. The well known approach by Migdal
[3] based on the Fokker-Planck approximation
has uncertainties that are much bigger than the
accuracy achieved in the experiment [13]. Within
the approach [1] the Fokker-Planck approximation
corresponds to replacement of the exact Green
function by the oscillator one. An analysis beyond
the oscillator approximation within the formalism
[1] carried out in [14, 15] demonstrated agreement
with the SLAC data [13] and with the later data
from CERN SPS [16] at the level of the radiative
corrections.

The formalism [1] was the theoretical basis
of the well known ASW (Armesto, Salgado and
Wiedemann [17]) approach to jet quenching.
The formulation in terms of the path integral
and diagram technique dealing directly with the
probability of the radiative processes given in [1]
turns out to be very convenient for the study of
the jet modification in the quark-gluon plasma
accounting for the multiple gluon emission [18, 19].
This study is of great importance for physics
of heavy ion collisions at energies of the RHIC,
LHC and future colliders, and is now under active
development.
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