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We introducce a layered random spin model, equivalent to the Generalized Random En-
ergy Model (GREM). In analogy with diluted spin systems, a diluted GREM (DGREM)
is introduced. It can be applied to calculate approximately thermodynamic properties
of spin glass models in low dimensions. For Edwards -Anderson model it gives correct
critical dimension and 5% accuracy for ground state energy in 2d.

PACS: 75.10.Nr

Derrida’s Random Energy Model (REM) [1] was introduced as an archetype spin glass
[2] model. In recent years it is becoming more and more popular. It has been applied in
many fields of physics, biology and even in information theory [3,4]. The generalization
of the REM (called Generalized Random Energy Model, GREM) was introduced in ref.
[5). It was used to solve approximately other spin glass systems [6,7]. Unfortunately, the
accuracy to describe other spin glass systems was not much better than for the REM. In
this work we introduce a diluted spin model which thermodynamically resembles GREM
(in the case of large coordination number it is exactly equivalent to GREM),then construct
some new model of energy configurations - DGREM. In some (practically important) cases
our spin model is thermodynamically exactly equivalent to DGREM.

Even the simpler diluted REM (DREM) [8, 9] has proven to be a good approximation
for models in low dimensions (d = 1,2,3). This important fact was observed in [10], where
by information-theoretical arguments (mathematically leading to a DREM) a percolation
threshold was found.

In the DREM one has N Ising spins interacting with each other in the z (randomly
chosen from all the possible C}, = Nt/p!(N — p)!) p-plets of Ising spins and quenched
random couplings 7;,,....;, having values +1.

The Hamiltonian reads

2
H =~ Z T,'l,...,,'pa','l e o'i,,- (1)

(1<4;, < <N)=1
At high temperatures the system is in the para magnetic phase and
F
N> —dTIncoshf3 ~ TIn2, (2)

where 8 = 1/T. Below the critical temperature T, = 1/, the system freezes in a spin-
glass phase with internal energy U/N = —dtanh 8, and vanishing entropy S = 0. Here
tanh 8. = f(d) involves a function f(z) defined by the implicit equation
In2

b
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For the ground state energy of the Edwards - Anderson (EA) model on a hyper cubic
lattice in d-dimensions (z = Nd)

E
-5 = f@a @

In 2d Esq. (4) gives E ~ —1.5599, which is close to result of Monte-Carlo simulation
for the case of random +1 couplings [11] E/N = —1.4015 + 0.0008. This estimate by
formula (3) was done by Derrida in his original work [1], long before the introduction of
the DREM in reference [8].

Let us now construct some spin model, which has properties like the GREM. It is very
important to have spin representation for GREM (for example — to construct temporal
dynamics). _

We consider a stacked system consisting of M planes with spin o ordered along a
“vertical” axis. In plane (layer) k there are N} spins. So spins in the layer 1 < k < M
interact with spins from the layers k £ 1, the first layer interacts with the spins of second
layer, spins from the layer M interact with each other. We have the Hamiltonian

£2.7
H=- Z Til_...,ipa'ﬁl--'af\:—
(1<iy, - <ip<Npr)

[

Zh
- Z Tih...’,-,afl_l ---af;/':ofl ""7;",,/2' (5)
k=1 (1<é1, - <ip/a<Niy-1,1<j1<Jpa<Ni)
Let us now introduce some (equivalent) GREM like model. We consider some M level
hierarchic tree. At first level there are 2I¥ branches. At second level every old branch
fractures to 22 new ones and so on. At the level M there are 2V branches, where
N = Z?;, um = Ni Energy configurations of our system are located on the ends of M-th
level branches. On every branch of level i there are located 2V: random variables € with
the distribution
1 ico
polef, zi) = —/ dkexp[—ke + z;Incosh k]. (6)
27 J o
This is a distribution for a sum of z; random =+1 variables. So z; resembles number
of couplings in our diluted spin models. With any energy configuration are connected
M branches. We define configuration energy as a sum (along the path on the tree,
connected with chosen energy configuration) of these M variables €. We see a usual
picture of GREM, where random variable are distributed according to (6) instead of
normal partition.
We can consider the case of large M with smooth distribution of z; and Ni. In this
case we can introduce continues variable v = k/M between 0 and 1, labeling the level of
planes and define distributions

2 = dz = zdv, N = dN = n'(v)dv dv = %, (N

where n(v) is a given function (entropy in bits). The variablev ( 0 < v < 1) parameterizes
the level of the hierarchical tree and z is a parameter (for our spin system z is a total
number of couplings and parameter v labeling the level of planes).
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Of course, our function n(v) should be monotonic. Total number of energy config-
urations is 2™® and n(0) = N. We have, that 2V energy levels E of our hierarchic
model are distributed by partition p(E) = po(E, 2z). If two configurations (in our GREM
like model) meet at level of hierarchy v, they have zv common random variables. The
energy difference between two configurations is related to z(1 — v) non-common random
variables. Therefore the distribution function of two energies E;, Ey reads

p2(E1 — Ez) = po((E1 — Ez),22(1 — v)) exp(In 2n(v)). (8)

At high temperatures our system is in the para magnetic phase. The free energy is
given by eq. (2). When we decrease the temperature, two situations are possible: first,
dz/dN = z/n'(v) decreases monotonically with v; second, it has a local maxim.

In the first case the system has no sharp phase transition but it freezes gradually. At
temperature T' = 1/ all level with 0 < v < v¢(T') are frozen; they are in the spin glass
phase. The levels with v; < v < 1 are in the paramagnetic phase; vy is defined as the

solution vy = v of equation
z

tanh 3 = f(n'(v))' (9)

Using this relationship between 8 and v we can later use functions v(3) and 8(v). For
every finite 3 the value of v({) lies between zero and unity. When T — oo, v(3) — 0 and
when T' — 0, v(8) — vp > 0. So even in this limit some part of spins stay in their para
magnetic phase. Let us point out that this partial freezing only is possible in the Diluted
GREM, and not in the original GREM. For the free energy we obtain ( there is no factor
N in it):

z
n/(v1)

v(8)
—BF = z(1 — v(8))Incosh 8 + n(v(B)) In +z,3/ dvy f( ). (10)
0

The first two terms in the right hand side describes the para magnetic fraction of free
energy (n(v(8))In2 just is the entropy), while the last one describe the fraction of spins
frozen in a glassy configuration (it resembles equation (3) with 2/f'(v1) instead of d).
In the second case (function n'(v) is not monotonic) the system has a sharp first order
phase transition at a finite temperature T3. Below T, freezing occurs drastically for
all levels v < w2, where vy = v(8;) is defined by the equation n'(v2) = N — n(vs).
We used the fact that n(0) = N. The transition temperature T> = 1/8, follows from
tanh(B2) = f(z/n'(v;)). For temperatures T' < T» the free energy reads

_%F_ = z(1 ~ v(8)) In cosh B + n(v(8)) In 2+

v(8)
(BB + 48 [ dmf(E) 1)

n'(vz) "(v1)

To construct the spin Hamiltonian by means of chain of subsystems for this case is
still an open problem. Let us now consider a possible approximation to the Edwards—
Anderson model, following the idea’s presented in ref. [6]. d-dimensional case our 2V
energy levels FE are distributed according to the law

ple) = po(e, Nd) (12)
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with pp defined in eq. (6). Comparing with (6) one immediately notices that this is
exactly equivalent to a DGREM with the choice E = ¢, 2 = Nd. Let us now consider the
distribution of €; — e;. Following the arguments presented in reference [6], we find that

Ns(—vdN)
In2
We see, that variable v corresponds to energy per bond in ferromagnetic model. We can
remember from definition of temperature ds/dE = 1/7 = . At given §; we can define
corresponding v; as minus energy per bond for ferromagnetic model at temperature 1/ By

z=Nd, n()= (13)

v = —%- (14)
We obtain for the free energy
ﬁf; (1—v(8)) Incosh 3 + s(v(8)) + B / do, f(li%) (15)

Integrating by parts in the last term we get

Bl -
L= (—ww»mwmﬂ+sww»—ﬂAtw%%g§+vmmmm, (16)

where y as a function of B, is defined from the equation

In2
= f(=— 3 ) an

function v(f) is defined from (9),(13), and v; (B1) is minus energy per bond in ferromag-
netic model at temperature §;. In the equatiop {(16) value of the B is connected with
the given § via the equation tanh(8) = f(In2/8). In the limit of zero temperature this

d
reduces to BE g /ln2 dB1E(B1) ] (18)
In1+y(B)/1-y(B1)

He E(B) = |U| is minus the energy in the ferromagnetic model, y(3) is defined from (17)
and function f(z) from the (3). A calculation of the ground state energy for 2d EA model
using (18) gives E = —1.4763. For the case of other models one can use numerical data
for the ferromagnetic system.

This simple approximation to the ground state energy of disordered systems should
be eflicient at low dimensions.
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