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We present an analysis of an impact of kinks in the Frenkel-Kontorova model
on infrared lattice vibrations. Our results show that the vibration of particles
involved into the kink formation is very similar to that in a gap mode around
o force constant defect. We found that the IR phonon mode intensity possess a
universal dependence on certain combination of system parameters and the kinks
concentration. On the bases of these results a criterion, which allows to separate
the regime of weakly interacting kinks in the system from the regime of kink lattice
is proposed.

PACS: 63.20.-¢

A system of interacting particles in sinusoidal external potential (Frenkel-
Kontorova (FK) model [1]) is widely used for description of a broad variety
of physical phenomena, such as statics and dynamics of incommensurate phases
(see, e.g. [2]), transport properties in quasi-one dimensional conductors (see [3]
and references therein), adatoms diffusion on a metal surface [4], etc. Peculiar
features of the FK model usually explored are related to the kink-like solitons.
Properties of the kinks have been described in a number of publications [5-10].
The dynamics of the FK model has also been extensively studied, but mostly in
relation to the kink lattice rather than to the single kink [11-14]. Whereas it is
not completely clear yet at what system parameters the single-kink effects can be
still important.

The aim of the present study is to investigate an impact of both single kink
and kink lattice onto infrared (IR) active phonon spectrum and to specify the
range of the model parameters in which its properties can be treated in terms of
nearly independent kinks rather than in terms of superstructure, associated with
the kink lattice.

The investigations have been performed in two approaches: i) molecular dynamic
(MD) simulation has been used for the system to reach an equilibrium state
according to the method proposed in [15], after what all the particles have been
subjected to a small uniform step-like displacement and subsequent vibrations has
been analyzed via Fourier-transformation; ii) eigen vector problem (EVP) has been
solved in the harmonic approximation to study the vibrational spectrum of the
system. The kinks in this case have been taken into account through expansion
of the potential energy around particle equilibrium positions determined from MD
simulation.

Let us consider a chain of particles of mass m and charge e with nearest neigh-
bor interaction in the sinusoidal external potential V (z) = —(V -a?/4x?)cos (27z/a)
where a is the period of the potential. In case of harmonic interparticle potential
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the motion equation for n-th particle is

9%U, aUu, Va |, Un
m 3.‘.7" + 15 + Ky(2Up = Up—y — Unga) + 7, sin (21r—a—) eE(t), (1)

where v is phenomenological damping and E(t) is external electric field. Let
the time dependent position U, of the particle can be represented as U, =
na+ U2+ 6, (t),where UQ is quasistatic variable describing a shift of the equilibrium
position of the particle with respect to the corresponding potential minimum, é,(t)
describes a vibration of the particle around the new equilibrium position U?. Then
suggesting 6,(t) = 6n(w) exp(iwt) and E(t) = Egexp(iwt) the Eq. (1) can be splitted
into two equations

Ky(209 —UD_y — Udyy) + o-sin (2209) = 0, (2)

bn(w) [V cos (27U0) — w? + iw7] + K3(26n(w) — bn-1(w) — bns1(w)) = Eo, (3)

here and below we accepted m=1, e=1 and a=1. Disregarding the trivial case
U2 =0 Eq. (2) describes quasistatic kink-like deformation of the chain (due to
neglection of the dynamical term we restrict our consideration by standing kinks
only), while Eq. (3) describes the particle vibration around the new equilibrium
position. In the continuous limit Eq. (2) reduces to the sine-Gordon equation
[16] with the single-kink solution [17] U2(i) = 2x~'arctg {exp [+2(n — i)a/R:]},
Ry = 2,/K,/V can be considered as the kink radius measured in a units, ¢ is
the kink position. Substituting this solution into Eq. (x(w)=E;'Y 6n{w), where
peaks in Im(x(w)) correspond to resonances w, and Re(én(w,)) corresponds to
properly normalized eigen vector of the mode at w,.

It is well established that the presence of kinks (or domain walls) in case of
negligible Peierls—Nabarro potential barrier results in zero-frequency peak (phason
mode) in the optical conductivity spectrum o (w) =wIm(x(w)) (see Fig.l) corre-
sponding to translational motion of kinks. The high frequency peaks in Fig.l
correspond to the phonons, the strongest one being related to the inphase vi-
brations of particles inside potential wells. The particles involved into the kink
formation obviously possess a higher vibration amplitude at low frequencies, while,
as it is shown in the Fig.2, they are almost completely eliminated from the
phonon-like normal mode (the strongest one in the Fig.l). By dashed lines in
Fig.2 there are shown the eigen vectors also for the case of the external force
constant defect AV (i) in the particle site i and the rest particles being situated
inside the potential wells. The corresponding spectrum is also shown in Fig.l.
The strength of the defect has been determined from equation [18]

av !
N V + 4K, - sin® (%)

which means the zero-frequency gap mode formation in the vicinity of the ivery
close to that of the kink while the eigen vectors of the phonon-like mode nearly
coincide in both cases. Also the localization length of the gap mode S, (the
halfwidth of the peak shown by dashed line in Fig.2) is equal to Ri/v2 in a
wide range of R; values (see insert in Fig.2). On this basis one may consider
the system with kinks as a defect, or impurity crystal taking for the description
of its vibrational properties all the results already known. For instance, it is well

L+

=0, (4)
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Fig.l. Conductivity spectra of the Frenkel- Fig.2. The kink and the phonon (the strongest
Kontorova model containing 32 particles ar- peak in Fig.l) eigen vectors obtained in the
ranged over 31 potential wells: ! is the spec- ways corresponding to those in Fig.l. By sym-
trum calculated by (3) and (o) is that ob- bols in the insert the dependence of the gap
tained by MD simulation for K =4V, vV =36 mode radius upon kink radius Rj = 24 /_z’i is
arb.un.; 2 is the spectrum corresponding to shown

the force constant defect AV = —4.1231V (see

text), in the position of the kink middle par-

ticle no.16

understood that Sggp is determined basically by separation of the gap mode from
the optical band VvV and by the bandwidth 2\/K;. One may argue therefore
that the similarity between kink and the gap mode eigen vectors and the kink
eigen vector itself does not depend on the potential anharmonicity provided that
its influence on the above mentioned parameters is small enough. Thus, we expect
that our results will be applicable for a more realistic interparticle potential too.
From the analogy between the kinks and the defects it follows also that the
IR phonon mode intensity will show a linear decrease versus ny for low kink
concentration. It really takes place in certain range of R; values.

a NU.Z
I+ =
O
Yy 3
3 ’ g
e g
LN
S7Fh c 0
~ S
2 ! 5
b g
= [N [ERURE 1
Lot Sot N S
=t e
i 1 1 1 1 :1 4
30 40 50 30 40 50 n-a

Fig.3. a) The particle arrangement in the FK model of 128 particles (shown by symbols) in 120
potential wells (solid line). b) The eigen vectors of the kink-(/,3) and phonon-like (2, 4) modes.
K> =4V (solid symbols) and K2 =16V (open symbols), vV =36 arb.un

Although the N-kink solution of Eq. (2) is also available [19] it is more

convenient to approximate it with the sum of single-kink solutions. Our MD study
of the ground state of a system consisting of 128 particles arranged in 128-N;,
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potential wells with cyclic boundary conditions showed that even for Ny > 1 (N
is a number of kinks) the kinks lattice can be perfectly described as a sum of
the single-kink solutions with Ri ~ 2./K;/V. Namely, for Ny =8 and K; =4V
(Rtheor = 4.0) the value of Ry® ~ 3.94 has been obtained. Similar results have
been obtained also for the case when the number of potential wells exceeds that of
the particles. The dipole moment spectrum I(w)=Im{) é,(w)/Eo] has been both
calculated from (3) substituting U2 = Y- U2(i) with Ri = R and obtained from
MD simulation via fluctuation dissipative approach for various values of n = Rxng
(nx = Ni/128 is the kink concentration). Both approaches agree rather well even
at very low frequencies although the harmonic approximation obviously fails at
w=0. Two examples of the particles arrangement and corresponding eigen vectors
of the IR vibrations are presented in Fig.3. The eigen vectors for = 0.25 are
looking quite similar to those for the single kink or gap mode while for n=0.5
even the particles which still occupy the potential wells and not involved into the
kinks formation are strongly involved into the characteristic IR vibration (compare
the a and the b panels in Fig.3). It should be pointed out that there is no
noticeable difference between the commensurate and incommensurate cases (kink
lattice period is equal and is not equal to an integer number of the a, respectively)
if the kink concentration is not too high. Otherwise the difference manifests itself
in a small shift of the zero-frequency peak shown in Fig.l from its position.
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We concentrate here on a question concerned with the intensity of the phonon
peaks shown in Fig.l as a function of the parameter 7. For investigation we used
the EVP approach using Eq. (3) for various values of K3/V and ni. The results
are presented in Fig.4. The integrated intensity Iy = fI(w)dw of the phonon
peaks reveals a universal dependence on the parameter n = Rin;. We found also
that the eigen vectors of the strongest IR vibration obtained for different niy but
for one and the same 7 values, can be transformed to each other by proper scaling
of a, i.e. they obey some sort of scaling invariance. Note, that the parameter 7
means a volume fraction (in 1D case) occupied by the kinks and the observed
decrease in Iy at low 7 values can be interpreted as washing out of the high
frequency density of states by gap modes associated with the kinks. At higher 7,
when the kinks form real lattice and eventually sinusoidal superstructure due to
interaction with each other, the decrease in Iy ox  slows down because the real
kink radius can not exceed at least one half of the kink lattice period. Indeed,
the linear decrease in Iz shown in Fig.4 ends at a cut-off value of n ~ 0.4
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which implies the above mentioned restriction on the kink radius is R; < 0.4k;?
(k, =ni) where k, is the kink lattice (or superstructure) wave vector measured in
units of 7v/2a. Thus, we can display a range of parameters k, /K3/V < 0.2 in
which it is possible (or even necessary) to describe the properties of the system in
terms of independent kinks rather than in terms of some effective superstructure
related to the kink lattice. Since the IR eigen vectors has been argued to be
not very semsitive to anharmonicity one might expect this criterion holds for more
realistic potentials too. :

Using the above criterion one can examine if the kinks are important for
description of some particular system. For example, in the charge density wave
conductor (TaSeq);I the superstructure wave vector k, ~ 0.085 [20], vV can be
associated with the giant IR peak frequency w ~ 0.005¢V [21] and /K; can
be estimated from above as K; < wp ~ leV [22]), where w, is the plasma
frequency. Thus, one obtains k,/K2/V < 1 which implies that the kink effects
can be important in this compound. A more detailed consideration of vibrational
properties of 1D conductors on the basis of the obtained results will be given in
the forthcoming paper.

In conclusion we showed that i) the vibrational properties of kinks in the
Frenkel- Kontorova model are very similar to those of the gap modes in 1D
crystal with force constant defects; ii) on the basis of the universal dependence of
the IR phonon mode intensity on certain combination of the system parameters it
is possible to estimate whether single-kink effects are important for a particular
physical system.
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