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The appearence of new type of localized states at the helicoidal transition
is predicted. The order parameter decays with the oscillation in the vicinity of
the defect provoking localized transition. The cases of point-like, linear and planar
defects are considered and the specific heat jumps are calculated.
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1. Introduction. The presence of different defects and inhomogeneities may
strongly influence the phase transition in bulk materials. One of examples are the
surface defects. If near the surface, the local transition temperature is somewhat
higher than in the volume, then the localized near-the-surface state appears at
temperature T¢j, slightly above the volume critical temperature T¢o. This situation
is characteristic for surface magnetism (1], superconductivity localized near twinning
plane (2] and local structure transition [3].

If the Landau functional approach is used to describe the phase transition,
the local increase of transition temperature can be modelled by a é&-functional
contribution to the free energy density —v6 (r)%? where 9 is the order parameter.
The problem of critical temperature of the localized tramsition is then reduced
to the determination of the eigenvalue of a corresponding equation for the order
parameter ¥ (r}. This equation, when the gradient term in the Landau free energy
functional has the usual form ~ (V'¢t)2, is just the Schrédinger equation with é-
functional potential and self energy E ~ (Tcr — Tco) (see for example (1,2]). The
one dimensional potential well always has a localized state with negative energy
[4] (note that local increase of transition temperature corresponds to weak negative
§-functional potential). Then near the surface (or plane defect) the temperature of
localized transition will be higher than the volume one Tcy — Top ~ ¥2. For the
linear defect the difference is exponentially small [4] and eventually non-observable.
In the case of a point-like defect the local transition is absent, as there is no
localized state for weak three dimensional §-functional potential [4].

The situation however occurs to be quite different in the case of phase transition
into a helicoidal state. To be more specific, we will consider the magnetic helicoidal
transition like that the one observed for example in MnSi (5] and FeGe [6]. In
the absence of the center of symmetry in the crystalline structure, the magnetic
free energy functional contains the terms ~ AM :-rotM ( where M is the local
magnetization) which leads to formation of the helicoidal magnetic structure [7].
The same is true also for cholesteric liquid crystal [8].

In the present article, we demonstrate for helicoidal-type transition that even
the point-like increase of transition temperature leads to the formation of a very
specific localized state above the bulk critical temperature. We calculate the
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structure and thermodynamical characteristics of such unusual localized states near
the point-like, linear defects and plane defect.

2. Localized state near a point defect. We consider the problem using the
Landau-type functional for magnetic free energy:

né

b
F 7] [‘r‘M2 + —2—M4 +a® (VM)? +® (VM) +a® (VM) +

+AM - rotM — 7M26 (r)] d’r. (8]

where 6 is of the order of magnetic transition temperature Tcg, n the den-
sity of magnetic atoms, Mg - the saturated magnetization at T = 0, and
7= (T —Tco) /Tco. Note that Tco is the critical temperature of ferromagnet-
ic transition which occurs in the absence of the term AM -rotM. In the presence
of this term (the case of the crystalline lattice without center of symmetry), the
transition into helicoidal magnetic structure occurs at some temperature T¢ higher
than ferromagnetic transition temperature ((Tc — Tco)/Tco = 7o = (A/2a)?). The
term - yM?26(r) describes the local increase of transition temperature near the
point like defect, magnetic stiffness coefficient a is of the order of interatomic
distance, and coeflicient b has the usual sense. For simplicity, and bearing in mind
MnSi, we consider a functional for the cubic crystal symmetry.

To reduce the number of coeflicients, it is convenient to change the variable
introducing r’ — r/a, and further we omit the prime. First we consider the
question of the temperature of the localized transition and the appearing magnetic
structure. For that we may neglect the term ~ M* in functional (1) and write it
in Fourier-representation as:

n9 - ) ’
F= M'ZV; (T+q2) Mq.M_q+ l/\M_q (q X Mq) —'Y;Mq-M'q )

where A =X/a and 5 =-~a?.
Minimizing the energy over Mq after some algebra we obtain

Mo [X2g? — (r + ¢%)’]

Mq [$* - (r+4)7] = #h(ax M)+ ) +
73? [q(a-Mo) — ¢*My]
(r+49%) ' (3)

where Mo =M(r =0) is the magnetization at the localized defect. In the absence
of defect, for ¥ =0, we have from (3) 7 =2Agq —q® The actual wavevector of the
helicoidal state corresponds to the maximum temperature over ¢. This maximum
is realized for ¢ = go = A/2, and the transition temperature is 7o = A\2/4 which
is naturally higher than ferromagnetic critical temperature (r =0). If we are
interested in the formation of the localized state just above the bulk transition at
0r=71—719 << 710 , the singular part of Mq will be related with the wavevector
la| ~ go, and we obtain from (3) the following expressions for Mgq

H(axMo) 27 [a(q-Mo) — ¢’ Mo .
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The critical temperature for the appearance of the localized solution is given by
the “self-consistent” equation )

Mo = M (0) =/Mq-(-;i—()13—. (5)

The main contribution to the integral (5) comes from the region |q|~ go. Taking
this into account we obtain for the shift of transition temperature §t¢ = 71¢L — 70,
(where 7cp is the critical temperature for the localized state): §r¢c = (70/67)2.
Then even a small local increase of “bare” transition temperature gives rise to
localized state appearance. This property is a characteristic of the helicoidal
transition and is absent for the ferromagnetic one.

After Fourier transform of (4), we obtain the distribution of the magnetic
moment in the real space. Choosing z axis along M(0), in cylindrical coordinates
it may be written as

M, = %M(O)\/_%'[ (g0p) (g02) 7y ( /(qop)z + (qoz)z) ’

(g00)* + (qoz)2]

o

3 T (g00) [ 2)
M? = —M(O) £y 0 J% (QOP) + (QOZ) ’
2 2 [(QOP)2 + (902)2] ) (
3 x/2
M, = —2-M(0) / sin® 8 Jo (gopsin 8 ) cos (goz cos 8) df (6)
)

Note that calculating Fourier transform of (4) we have put g = go at the
nominator, which is justified at the distance |r|27/(gov/87) around the defect.
At larger distances, the magnetic moment decreases exponentially and the effective
volume V of the localized state is V ~ g° (61’c)_3/ 2. It increases when é7¢ — 0
which is a general phenomenon for localized states [1-3] and is related with the
divergency of the effective coherence lenght near T¢. Then for smaller ¥ the
localized state appears closer to bulk transition temperature but its dimensions
becomes larger. The structure (6) of the localised state is rather complicated. In
Fig. 1, the distribution of the magnetic moment in the plane z =2x/qo is presented.

Knowing the magnetic moment distribution, we may obtain the jump of specific
heat at such localized transition.

AC

2
243
né [/M d r] nf 2n (2)2 1

~ Mo /M‘d’r MZbTco I \3) gofrc

where the factor I ~ 1.17, comes from numerical evaluation of the integral. The
divergency of AC when ¥ — 0 can be explained due to the rise of the effective
volume when ¥ — 0, however the density of the specific heat AC/V ~ (61'c).1/ 2
goes to zero while § — 0.

3. Localized state near a line defect. The only change in the initial Landau
functional for the magnetic free energy in such case is the local increase of critical
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temperature along the line defect is described by the term —yM?2(0,0,2)6 (z)é (v),
with the z axis chosen along the line. We obtain the self-consistent equation
similar to (5) for Mo (q.), where Mg (g,) is Fourier harmonic of M (p=0,z).

Using equation (4), we find the following system of equations giving the relation
between 67 and the free parameter ¢,, where ¢, is a modulation vector along the
defect.

5 fiAg: MY + (2 +q?) MZ dq,

X st+(80)' . (2r)?
My - i /i?\q,Mg+(q: +2q3)M3° dq,
A? 67 + (69) (27r)2
M = 2% i M§  day 7

X2 J g1+ (8q) (2r)?

The critical temperature §7. must be obtained by maximization of &7 with
respect to g,. One solution with M = MJ =0 can be easily found. For this

solution maximum transition temperature is reached at g, =0 and é7. = ('7:\/8)2.

However there exist another solution of the type M§ +iMJ and Mg =0 which
gives a higher transition temperature. For this solution, the maximum temperature
61 corresponds to wavevector ¢, near qo. We obtain for

_ % ) 2\ /6r 3/s~ 2 1/4‘73/4
= "\x) \g) *\&)

the transition temperature

b (TA) (1_2(%)”‘.-,1/4) @
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Fig.2 The magnetic structure
for the line-defect, z axis is
chosen along the defect and
we present the magnetic mo-
ment for two planes. The mo-
ment is oriented in zy plane
and the unit along z axis cor-
responds to VZ2¢ unit in zy
plane. It means that real
structure is obtained by the
contraction \/ie_ along z axis

This critical temperature is higher than the one for the solution Mg = MJ =0.
We conclude that the helicoidal localized state with a modulation vector = go
along 2 axis must appear at the temperature 7o+ é7. given by (8).

The structure in the real space is

M?® = M (0) cos (q02) Jo (qop\/Z_e_) ,

MY = M (0)sin (go7) Jo (0pv/2e ) - 9)

The range of application of these equations is p < 1/(g7%/%). At larger
distances, the magnetization decreases exponentially. We illustrate the distribution
of magnetization as presented in Fig.2. The specific heat jump at the transition

is
3\ 1/4
ac~_ (TN __1
M2bTco \ 12 4X251/4In 7

4. Localized state near a planar defect. Considering the case of planar
defect, we choose z axis perpendicular. to the plane. The local increase of critical
temperature in the plane is described by the term —yM (z,y,0)6(z) in the free
magnetic energy. The analysis of the system of equations similar to (7) shows
that the solution with the highest transition temperature is of the type MY +iM§

. o . 5 .91 2/3
and MZ =0, while the transition temperature is é7. = 3 (215?) Pand the wave
vector is directed along « axis and occurs to be close to go (¢ = gf ~1=21,/0)

g0
The magnetic structure of localised state is

£

MY =M (0) e“"“l‘lﬁ% sin (qo E1] 3+ g-) cos (goz),

2 e
%= ~qolzlve = _ o -+ = }si
M*=M(0) e ﬂsm(qo]zl\/;-l- 3)mn(qo?)
and the specific heat jump is

nd 212 nd (16)”3

2.12 -
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C ~ =2,
A M32bTco gov/e M2bTco
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5. Conclusion. We have found the structure of the localized states for the
systems with helicoidal transitions. It occurs that even a small point-like local
increase of the transition temperature gives rise to localized state appearance. The
very easy broadening of the helicoidal transitions may be its inherent property.
The preliminary data on the specific heat in MnSi [9) approve our conclusions.
Apparently in MnSi, the main type of defects are the dislocations. It may be
interesting to perform the neutron diffraction studies to verify the predictions
concerning the structure (see eq. (8)) of such line defect state. In our analysis
we have neglected the fluctuations which could influence the detailed structure of
the localized state, but would not change qualitatively our prediction based on
Landau functional approach.

We a grateful to N. Bernhoeft, J. Flouquet, Y. Leroyer and V. Mineev for
helpful discussions and useful comments.
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