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Applying chirped Gauss~—Hermite orthogonal functions we present an analytical de-
scription of the breathing dynamics of the chirped dispersion-managed soliton. Theory
describes both self-similar evolution of the central, energy-containing core and accompa-
nying nonstationary oscillations of the far-field tails of an optical pulse propagating in a
fiber line with arbitrary dispersion map.

PACS: 42.65.-k

Dispersion management ( the variation of the chromatic dispersion along the line) is an
attractive technique that allows to enhance the performance of fiber communication links
both for soliton and non-soliton transmission (see e.g [1-6]). Recent developments in
optical fiber communications have demonstrated that the dispersion management makes
the features of the soliton transmission to be close to those of non-soliton one [4-6).
Dispersion-managed (DM) soliton is a new type of the information carrier with proper-
ties [1-17] rather different from that of traditional fundamental soliton (soliton solution
of the integrable nonlinear Schroedinger equation (NLSE) [18]). In particular, during
propagation along the fiber line DM soliton undergoes rapid self-similar breathing-like
oscillations of the width and power, it is chirped and it can propagate at the zero or even
normal average dispersion Theory of DM soliton in the system with strong dispersion
management has been presented in [17]. The first implementation of the commercial fiber
optical networks based on dispersion-managed soliton has recently been reported in [6].
Though the basic theory of DM soliton has been already presented in [8, 7, 12-14, 17],
due to a wide range of possible practical system configurations many interesting problems
are still open. An intriguing open theoretical problem is the origin and structure of the
oscillatory tails of the DM soliton [16, 11]. As it has been shown in [16] such tails mani-
fest themselves as nonself-similar modulations of soliton profile during the compensation
period, though their amplitudes are rather small compared with the main peak. In this
paper we present a systematic method to describe the dynamics of the self-similar core
and oscillatory tails of the DM soliton using an orthogonal set of chirped Gauss—Hermite
functions. This approach can be very useful in numerical modeling of the dynamics
of arbitrary initial signal in the dispersion-managed communication systems, including
chirped return-to-zero and non-return-to-zero formats [4, 5].

Pulse dynamics in dispersion-managed optical transmission systems is governed by
the NLSE with periodic coefficients:

14, +d(2)An+c(2)|APA =0, d(z) =2 D(2)L/(4mcitd), c(z) = PoLo exp(—2Lvz).
1)
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Here the propagation distance z is normalized by the dispersion compensation period
L, time t is normalized by the parameter ¢, the envelope of the electric field is scaled
by the power parameter Fp. Periodic function ¢(z) accounts for power decay due to
fiber loss and periodic amplification, ¢ is the nonlinear coefficient, vy describes fibre
losses. Lumped action of the amplifiers is accounted through the transformation of the
pulse power at junctions corresponding to locations of amplifiers. Normalized chromatic
dispersion d(z) = d(2) + (d) represents the sum of a periodic, rapidly varying (over
one compensation period) high local dispersion (d) and a constant residual dispersion
({(d) ~ {¢) ~€ <« d ). Here Ao is the operating wavelength, ¢; is the speed of light, D
is the local dispersion coefficient. The amplification distance in general can be different
from the compensation period, but without loss of generality we assume here that ¢ and d
have the same period L. Nonlinearity comes into play on the scale Zyg ~ 1/(FPog) > L
and the physical problem that we consider is how to describe asymptotic solution that re-
alizes the balance between effects of nonlinearity, average dispersion and averaged effects
resulting from the rapid variations of the dispersion d(z) and power c¢(z). The mathe-
matical formulation of this problem is how to average Eq. (1) if the periodic oscillations
of d(z) are large. A small parameter in the problem is L/Zy; « 1. Note that due to
large variations of d, direct approaches like the averaging method known for the so-called
Kapitza pendulum problem [19] does not work here, because rapidly varying field is of the
same order as the averaged (slow varying) part. Basing on the results of numerical sim-
ulations, qualitatively, solution of Eq. (1) presents the central peak oscillating with z in
self-similar manner, and the tails that are not self-similar, have smaller power compared
with the main peak, but that are responsible for soliton-soliton interaction. Important
feature of the DM soliton is the rapid oscillation of the phase (quadratic in time near

the center) during the period. The typical shape of the DM soliton found numerically is
shown in Fig. 1.
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As a first step, we remove from Eq. (1) a fast phase dynamics due to the large
variations of d. To describe a rapid self-similar dynamics of the main peak let us consider
following [17] exact transformation of the function A(z,t) that is, as a matter of fact,
modification of the Talanov transform known in the self-focusing theory [20):

2) = -  M(2) 2 Q(z, 2) __t__
A(t,2)=N ¢ p[zT(z)t] ) *= TG ()
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here T and M are periodic solutions of the following equations first obtained in [8, 13]

9T _ 4a(z)M; d—d%’- = %ﬁ—) - c(;)iv . (3)

dz
The coefficient NV in (3) is determined by the requirement that T and M are periodic
solution to Eq. (3). We obtain then a partial differential equation for Q(z, 2):

"aa—f = S%I: = -%(Qu - 22Q) - B(2)(1Q*Q + #?Q),

# = [ (500 +27100) - BRI GIQI + 1P @

Here (z) = c(z)N2/T. Next, we expand Q(z,z) using complete set of the orthogonal
normalized Gauss — Hermite functions Q(z,2) = 3, bn(2) fn(z) with

1 T
_z? = = -1 - = —— —_—— .
(fa)zz —2°fn = Anfns An 1-2n, fo(x) 2"n!ﬁexp( 2 YHn(x) (5)
Here H,(z) is the n-th-order Hermite polynomial and coefficients b, are given by the
scalar product in £? with f,: b, = (fn|Q). Inserting this expansion into (4), after

straightforward calculations we obtain a system of ordinary differential equations for the
coefficients b,,:

.db, _ SH, d .
it = F: =~ bn dn = B(2) ; bmSnm —B(z) D bmbibiRmppn =0. (6)

m,l.k

the Hamiltonian Hj is

d ~ * 2 * 1%
Hy= -7 > Aalbnl® = B8(2) Y Sn.mbmby, — @ > Rpmanrbibmbiby.  (7)
n=0 nm n,m\l.k

Here we introduce notations

+o00
Sn,m = (.fmlxzfn) = / fm(m)wzfn(m)dza

+oo
Rumih = (Fmlfafifi) = f Ful@) fn () (@) i (2)d2. (8)

Since integrals of the form | z"e=**" can be calculated analytically, it is possible to
determine any S, and R, ik As a next step we remove rapid oscillations by the
simple transform b, = Bpe'R(*)* with dR/dz = d(2)/T(z)® — (d/T?). In Fig. 2 it is
shown typical dynamics of T', M and R for specific practical dispersion map d. Equation
for the By, reads:

,dBn d .(Am—xn)R( )
i—= + (77)AnBm + B(2) ; et %) Sy mBm+
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+8(2) Y PmtM-M=AIRE B BBy Ry 1 4n = 0. (9)
m,l.k
The averaging procedure based on the Lie-transform [21] can be applied directly to the
Eq. (9). Field B, is then composed from slowly varying (Uy,) and rapidly varying (1,
dnn/dz > n,) parts: By, = U, + Nn + ..., where 7, < Uy,. This procedure is a natural
generalization of the result obtained in [17] for the case of strong dispersion management.
Averaging over one period gives

dU, 6H _ ,d _ #(Am —An)R(2)
T Ty T gl - LA "

XSnmUm = Y (B(z)elOm T2 AN G UL R g pn = 0, (10)
m,l.k

Hamiltonian H reads

_ %) 3 (L + )| U2 = T (B(2)emIREN S, U, U

n=0 n,m
1 ; *
—3 2 (Bt MR Ry U ViU (1)
nym,l,k

Averaged Eq. (10) is the main result of the present paper. Solution of Eq. (10)
of the form U,, = F, exp(ikz) (with F, non-dependent on z ) presents DM soliton for
any given dispersion map. Obtained equation permits to describe in a rigorous math-
ematical way the properties of DM solitons and more generally the propagation of any
input signal for arbitrary dispersion map. Important observation from Eq. (11) is that
the sign of the average effective dispersion (d/T?) plays a crucial role in the dynamics
of dispersion-managed pulse. The basic condition (d) > 0 that provides the existence
of the traditional fundamental soliton is replaced by the requirement (d/T2) > 0 for the
DM soliton. This explains a possibility to transmit DM soliton at zero or normal aver-
age dispersion observed in [16]. We present an expansion of the DM soliton in terms of
chirped Gauss—Hermite functions. Similar approach has been used in [22] to describe
the propagation of linear chirped pulse. Dynamics of any initial bell-shaped pulse ( bell-
shape provides rapid convergence of the expansion) can be effectively described using the
method developed here. Any well-localized pulse will be presented by a limited number
of terms in the expansion. This makes the considered basis very useful in different prac-
tical applications and numerical simulations of dispersion-managed transmission systems.
Developed expansion plays in the considered problem a role that the Fourier-transform
plays in the linear problems.

Solution of the Eq. (1) in the general case can be expanded using complete set of
chirped Gauss — Hermite functions

Az t) = e""(’Mtz) S Bula)fol

n=0 )

] expliAnR(2)), (12)

here o
B, (z) = exp[—iA, R(2)] /; dz fn(z) exp(—i M T z?) A[z,z T(2)).
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Fig.2. The dynamics of T (solid line - so-
lution of Egs. (3) and squares - solution
of Eq. (1)), M (long-dashed line - solu-
tion of Eqgs. (3) and rhombus - solution of
Eq. (1)) and R (short-dashed line) over one
period is presented for the dispersion map
(above) d(z) = +d + (d), with d = 5 and
(d) = 0.15. A lossless model with ¢(z) =1
is considered.
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In Fig.3 it is plotted evolution over one period of few first |B,|? calculated from
expansion of true DM soliton. It is seen that B2 decay with increasing of n, though
due to smallness of B, this decay is not exactly monotonic. Power of the solution in the
general case is expressed as (B, = |By|exp(i®,))

2 N2 2 t 2
A OF = 5 3 1B Pl I+

N2 t t
+T(Z) mzmfﬂ[T(z)]fm[T(z)“Bn“Bml COS[z(n - m)R(z) + ‘}m —_— Qn]- (13)

First term in Eq. (13) presents a self-similar core of the solution and the last term is
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responsible for non-self-similar oscillations of the tails inside compensation cell. It should
be pointed out that the oscillating tails is an inherent part of the DM soliton, but not
long-living radiative term as for the NLSE soliton [23].
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To conclude, we have derived average equation describing the shape of dispersion-
managed soliton for an arbitrary dispersion map. Using chirped Gauss—~Hermite func-
tions we have described both the self-similar structure of the main peak and the oscillat-
ing tails of the dispersion-managed pulse. Complete set of orthogonal chirped Gauss-
Hermite functions is very useful in numerical simulations of the evolution of an arbitrary
bell-shaped initial signal down the dispersion-managed fiber system.
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