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The deviations from the Standard Model in the probability of Z — bb decay
and in the forward-backward asymmetry in the reaction et e~ — bb are studied in
the framework of the model of dynamical electroweak symmetry breaking, the basic
point of which is the existence of a triple anomalous W-boson vertex in a region
of momenta restricted by a cutoff A. We obtain a set of equations for additional
terms in the WbE vertex and apply its solution to the process Z — bb, We show
that it is possible to obtain a consistent description both deviations, which is quite
nontrivial because these effects are not simply correlated. The necessary value of
the anomalous W interaction coupling, A = —0.22 £ 0.01, is consistent with existing

limitations and leads to definite predictions, e.g., for pair W production in ete™
collisions at LEP200.

PACS: 12.15.-y, 14.80.Er

It is well known that the Standard Model (SM) of the electroweak (EW)
interaction is in very good shape in respect to experimental checks, the only
dubious points consisting in two effects which are both connected with the b5d
final state. Namely, experiment gives for the probability ratio R, =0.2178 4+ 0.0011
as compared to the SM value 0.2158 and for the forward-backward asymmetry
A%p = 0.0979 4+ 0.0023 as compared to the SM value 0.1022 [1]. The relative

discrepancies are as follows:
_ Ry(exp) - Ro(th)

Ay R (th) = 0.009 + 0.005,
- A} (exp) — A% p(th) - _
Arp A (ih) 0.042 +0.023. (1)

In the present note we consider whether one can explain these deviations as
something other than purely statistical fluctuations. Note that two independent
deviations of 1.8 standard deviations each have a rather small probability of being
a statistical fluctuation. For the present ‘purpose we consider the version of EW
theory in which the symmetry breaking is due to a self-consistent appearance of
an additional triple gauge boson vertex in the region of small momenta (2, 3].
This vertex can be described by the following expression in momentum space,
which, according to the approach taken, acts in a region limited by an effective
cutoff A which is of the order of magnitude of a few TeV [4, J]:

e i)
T2 (p,q, k) = € =2 F(p?,¢* k) T (P, 0, £) ,

M},
F,wp(P, g, k) = g;w(Pp(qk) — gp(pk)) + gw(‘Iu(Pk) - k,‘(pq)) +
+ 9oul(kv(pg) — Pu(ak)) + kupugp — qukup, - ' (2)
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. AS
(A% — p?)(A? - g?)(A% — k)

F(pz’ q21 kz) =

Note that this term, among others, is currently considered [6, 7} in the phe-
nomenological analysis of possible gauge boson interactions. Vertex (2) leads to
the generation of masses for the W and Z [2, 3], with || being a few tenths of
a TeV and A being of the order of a few TeV. The mass generation for the ¢
quark in this approach is connected with the other self-consistent vertex, having a
Lorentz—Dirac structure of the anomalous magnetic moment of the ¢ quark [3, 4]:

iex
P:;(pv g, k) = mF(szqz:kz) ou Ky, (3)

where F(p?,q%,k?) is the same form factor as in vertex (2), and k, is the photon
momentum. The corresponding solution gives x to be around unity, and an
experimental limitation || <1 is derived from the ¢ production data in Ref. [4].

Adding anomalous vertices (2), (3) to the usual ones, we formulate equations
for another anomalous vertex for the Wb interaction. Let us look for it in the
form

TR0, k) = g P68 0 b (€414 79) + (1= 7)) (4)

where p and ¢ are, respectively, the t-quark and b-quark momenta, k is the W
momentum, and the form factor
2 12 At
F m )k = .
(p ) (A= p?)(AZ = k%)
We assume that not only left-handed b quarks but possibly also right-handed ones

take part in the interaction. Due to the gauge invariance there is, in addition
to (4), a four-leg ZbW+WO vertex

D 2
Tih(p. b, ka) = 53 F(p, kL kD) o (€4 (14 96) +6-(1 = ) 3 (5)

where x and v are, respectively, the indices of W+ and W©°, and p, k;, and k;
are the momenta of the ¢t quark and of the same bosons, respectively.

We consider equations for vertex (4) in the oneloop approximation. This
means that we take the following equation (written in a schematic form):

I'** =T + (I‘o(bbA) I‘”’I‘(WWA)) + (ro(be) r* I‘(WWZ)) +
th pt th 1t . th it
+ (1"0 r I‘(WWA)) + (r T I‘O(WWA)) + (1‘ T I‘(WWA)> +
+ (r“’ To(ttZ) I‘(WWZ)) + (r"’ To(ttA) r(WWA)) + (6)

+ (r“’(WA) I‘(WWA)) + (P"’(WZ)I‘(WWZ)) + (I‘”’(WA) rt).

Here a subscript zero means the corresponding SM vertex and, e.g., I'(WWA)
means vertex (2) for the interaction of two W bosons and a photon (factor sin ).
The symbol I'*(..) means vertex (5) with the corresponding vector bosons. The
new vertex '

Ty, = :,gﬁ'ya (n+(1 +7s5) +n-(1 -jvs)) (7)
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is introduced for the purpose of taking into account the contributions of loop
diagrams to different matrix structures. We have of course the corresponding
propagators between vertices and the usual momentum integration with a factor
of (2x)~%. All ten one-loop terms diverge quadratically if one neglects the form
factors mentioned above. The integrations in loop diagrams (6) are performed
with the use of Wick rotation in Fuclidean momentum space. Taking the form
factors into account, we obtain a finite result, which reads

mo= 1= Ynkes (34 s )0 1 = oK (54 e )

8 Scos? 6w 8 Scos? 8y
F1=1—AC(Z%-—Z—8—;M72—9W), C=%, ®)
F2=1—AC(-4%—8—émlz—ew), K=%.

From' set (8) one concludes that there can be two types of solutions. The first
one could be called a trivial solution; that is, it corresponds to

(- =0. 9
However a non-zero solution may also exist, provided that the following condition
is fulfilled:
AkICK (1 A
192F, (Z + 5c0529w) =L (19)

This condition gives a relation among the parameters of the model. Namely, using
formulas (8) and (10), we get

24 24k k*K\1-/T¥4
= 2 _ B
A = Scos’ By (sinz . 5 3 ) T (11)
768 k2 M2 24 2Ur k2K\2 .
4 SM? (sin2 bw 5 4 ) ) £y = —V2ksin® 0w .

Now we use the relations obtained to evaluate the vertex Zbb. We have for this
vertex the symbolic one-loop representation

I* =T} + (1‘”’ L) + (T*To(WW2)I%) +
+(r*r(wwz)r*) + (TP r(wwz)r*) + (12)
+(rrww2)TP) + (12W2)r*) + (Tr*(wz)).

Here the vertex I'* has the form

b g .
Pp = m (a'yp+b‘yp"/5+czap,‘k,‘) . (13)
Performing again the usual loop calculations, we have for the vertex
1 2 1
a=ag+ay, b=by+bs, do"‘—-2~+§sln20w, b°=_§’

ay

3

{iK 1 sin~26y 1
(e

- ——)R2—cot29w(1+R2)+sin"20w(l+R’)%),
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GBEK( 1 sin20p 1 - A
b= 2% (—— - (- 5)32 — cot? @y (1 — R?) +sin~2 8y (1 —Rz)g) ,
= AK M, 2 f-zf- £+ = f-—
C ZM%, cot Gw R( 5 b m y R E+ . (14)

Using vertex expression (13) and results (14), we obtain the following asym-
metries A, and App, which we define as the relative differences of our results
and the SM calculations, to be compared with the experimental numbers (1):

Ay = -————-—1 2((100.1 +b0b1)+a2+b2+ ———é C2 App = 51 £2
a3+b(2) 1 1 2 ’ 14¢ !
12(a1bg + agby + a1b

£ ( 100 T Q001 -+ a1 1), (15)

3 - 4sin? 0y
72((100.1 -+ bobl) + 36(0,% + b%) + 45C2M§
(3— 4sin?6w)* +9 '

Let us compare results (15) with data (1). Let us first take solution (9),
ie, R=0. Then the signs of both deviations (1) are negative throughout the
entire range of variation of our parameters. For example, for K = 1.74 (which
corresponds to A = 4.5 TeV [4]; this is the value that we shall use in what
follows), A =0.5, and £; =0.04 we have

Ay = —0.01; App = -0.0007.

Taking different values of the parameters, we become convinced that there is no
way to obtain a comparatively large App and a positive A, as the data (1)
indicate. .

Let us now turn to the nontrivial solutions (10). According to (11), for
admissible values of «, viz., —1 < x <1 (Ref. [4]), one has

-0.23 <2< -0.21 (16)

These numbers are in no way inconsistent with the experimental limitations [8, 9).
Relation (16) specifies A to good accuracy. In addition to A and K, which is
already determined, we also have the parameters R and £;. For the ncntrivial
solution ¢{_ 50 the ratio R is arbitrary. The parameter £, is connected with
the effective anomalous magnetic moment « of the ¢t quark (10). Now we take

= —0.22 and present in Table the dependence of deviations (1) on {R| (2.0 <
|R} < 3.2) and £&4(—0.05 < ¢, < —0.03) .

& =

Ay (upper lines) and App (lower lines) for different values of |R| (rows) and £, (columns)

-0.05 -0.045 -0.04 -0.035 -0.03
2.0 {| 0.008 0.003 0.002 0.001 0.001
-0.038 || -0.031 || -0.024 || -0.018 || -0.013
2.3 0.01 0.008 0.006 0.004 0.003
-0.051 || -0.041 || -0.032 || -0.024 || -0.017
2.6 || 0.018 0.014 0.010 0.008 0.005
-0.067 |} -0.053 || -0.041 || -0.031 }} -0.022
2.9 || 0.027 0.021 0.016 0.011 0.008
-0.085 |i -0.067 || -0.052 || -0.039 | -0.028
3.2 1| 0.038 0.029 0.022 0.016 0.011
-0.105 || -0.083 j| -0.064 | -0.048 || -0.034
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We see that quite acceptable numbers are concentrated around the main
diagonal of the table. For example, for

IR] =245, ¢, = —0.043 (17)

the numbers hit precisely the center values of (1). We conclude that for the
nontrivial solution (10) it is possible to obtain agreement with both numbers (1).
This result is by no means obvious — we recall that for the trivial solution
agreement is impossible. The important qualitative feature of our result is the
presence of a large contribution of right-handed & quarks to the anomalous vertex
(see (4), (7)). This modified vertex gives a number of predictions. For example,
the t-quark width now reads

Iy =To (1 + 4A), (18)
o = O (ME— My)? (2Myy + MY)
0 64r M3 MZ, ’
Ao 8VIMEE, | KPE | 2M(2M] + M) Ei(1 4+ R?)
2MZ + M2 4sin’ 0y MZ(2ME, + M2)
3KMy B¢ (1+ RY) K2p%L(1+ R?) (19)
2+/2sin? 6y (2ME, + M?) 64sin® Oy

1 A
p= (Z + SCOSZGW) '

Here Ty is the SM value, and if we take the parameter values (17), we find
from (19) that A = 0.062, i.e., more than a 6% effect is predicted for the t-quark
width.

As to possible values for A (16), this prediction could be checked at
LEP200 [10], provided that the necessary integral luminosity is accumulated in
the study of reaction et + e~ — Wt + W,

This work is partially supported by the Russian Foundation of Basic Research
under project 95-02-03704.

Note added in proof. The last experimental limitation —0.31 < A < 0.29 [11},
being consistent with our prediction (16), demonstrates, that the experimental
accuracy approaches the necessary level.
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