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The temperature T, of the Kosterlitz—-Thouless transition to a superfluid state
for a system of magnetoexcitons with spatially separated electrons e and holes
h in coupled quantum wells is obtained as a function of magnetic field H and
interlayer separation D. It is found that T, decreases as a function of H and D at
fixed exciton density ne; as a result of an increase in the exciton magnetic mass.
The highest Kosterlitz—Thouless transition temperature as & function of H increases
(at small D) on account of an increase in the maximum magnetoexciton density
nez versus magnetic field, where ne; is determined by a competition between the
magnetoexciton energy and the sum of the activation energies of incompressible
Laughlin fluids of electrons and holes.

PACS: 64.70.ja, 71.27.+a, 71.35.4z, 71.45.1r,

Systems of excitons with spatially separated electrons e and holes h (indirect
excitons) in coupled or double quantum wells (CQWs) in magnetic fields H are
now under intensive experimental investigation [1~3]. They are of interest, in
particular, in connection with the possibility of superfluidity of indirect excitons or
e—h pairs, which would manifest itself in the CQWs as persistent electrical currents
in each well [4], and also in connection with curious quasi-Josephson phenomena
[5]. In high magnetic fields two-dimensional (2D) excitons exist in a substantially
wider temperature region, as the exciton binding energies increase with increasing
magnetic field [6, 7]. In addition, 2D e-h systems in high fields H are of interest
because of the existence, under some conditions, of unique exact solutions of the
many-body problem and nontrivial kinetic properties {8-10].

Attempts at experimental investigation of magnetoexciton superfluidity in CQWs
[1] make it essential to study the magnetic-field dependence of the temperature of
the phase transition to the superfluid state in systems of indirect excitons and to
analyze the density of the superfluid component. This is the subject of this paper.
It will be shown below that increasing the magnetic field at a fixed magnetoexciton
density leads to a lowering of the Kosterlitz—Thouless transition temperature 7
on account of the increase of the exciton magnetic mass as a function of H. But
it turns out that the highest possible Kosterlitz—Thouless transition temperature
increases with increasing H (at small D) due to the rise in the maximum density
of magnetoexcitons versus H.

To estimate the superfluid density let us start by obtaining the spectrum of
collective excitations of a system of indirect magnetoexcitons.

For an isolated magnetoexciton there exists a conserved quantity [11] (the
exciton magnetic momentum P) connected with the invariance of the system upon
a simultaneous tramslation of ¢ and % and a gauge transformation (see [7, 12]).
Here P =—iVR — £[H,r], where R =1(re +r}) are the coordinates of the center
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of mass, r =re —r}, are the internal exciton coordinates, and the cylindrical gauge
for the vector potential is used: Ao} = %[H’re,h] (e=h=1).

The dispersion relation ¢(P) for an isolated magnetoexciton at small P is a
quadratic function: e(P) & P?/2mpy, where mpy is the effective magnetic mass,
which depends on H and the distance D between e layers and h layers (see [7]).
For the magnetoexciton ground state mgy > 0.

The quadratic dispersion relation holds for small P at arbitrary H and follows
from the fact that P =0 is an extremal point of the dispersion relation ¢(P).
The last statement may be proved by taking into account the regularity of the
Hamiltonian Hp as function of the parameter P at P =0 and also the invariance
of Hp upon simultaneous rotation of r and P in the plane of the CQW [12] (Hp
is the effective Hamiltonian for eigenfunctions of P [0, 7, 11]).

For high magnetic fields rg € af} and at D ~ rg the quadratic dispersion
relation is valid at P < 1/ryg, but for D >» ry it holds over a wider region: at
least at P < (1/ru)(D/ra) (af =1/2ue? is the radius of a 2D exciton at H =0;
p=memp[(me + mp); mep are the effective masses of e and h; ry =(1/¢3H)1/2 is
the magnetic length).

Using the quadratic dispersion relation for magnetoexcitons, one has at any H
an expression for the magnetoexciton velocity analogous to that for the ordinary
momentum, R =8¢/0P = P/my, and the following expression for the mass current
of an isolated magnetoexciton:

J(P)= %P, (1)

where M =m, + my.

The indirect magnetoexcitons interact as parallel dipoles if D is larger than the
mean distance between an electron and hole along the quantum wells, D > (r).
But in high fields H one has (r) ~ Pr% [6, 7). Typical values of the magnetic
momentum P for dilute magnetoexciton systems obey the inequality P < \/n,
(due to the “large” logarithm In(n..) — see below). So the inequality D > (r) is
valid at D> \/nr%.

The distinction between excitons and bosons is due to exchange effects [13).
But these effects for indirect excitons with spatially separated e and h in a dilute
system n.za?(H,D) < 1 are suppressed on account of the barrier associated with
the dipole—dipole repulsion of the excitons [14] (e.g., in high fields H the small
parameter is '

exp [—(2mH)5/665/3D2/3ne‘x1/12ln1/3 (1/87rn”m§{e4D4)] ;

a(D, H) is the magnetoexciton radius along the quantum wells). Therefore exchange
effects are megeligible and the system under consideration can be treated by the
diagram technique for a boson system.

For a dilute 2D magnetoexciton system (at n..a%(D,H) < 1) summation of
the ladder diagrams is adequate. But in contrast with a 2D system without
a magnetic field [15], some problems arise due to nonseparation of the relative
motion of e and h and the magnetoexciton center-of-mass motion [6,7,11]. So the
Green functions depend on both the external coordinates R,R’' and the internal
coordinates r,r’. It is convenient to treat the problem in the representation of
eigenfunctions |[nmP) of the Hamiltonian and magnetic momentum of an isolated
magnetoexciton.
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In high magnetic fields, when the typical interexciton interaction Dzne-:/ g hw,
(where w, =eH/u is the cyclotron energy, and u = m.my/(m.+ ms)), one can
ignore transitions between Landau levels and consider only the states on the lowes}
Landau level m=n=0. Since r has a typical value of rg and P <« 1/rg, the
equation for the vertex I' in the ladder approximation for a dilute magnetoexciton
system (n.za®(H, D) < 1) in the n,m, P representation turns out to be analogous to
that for a 2D boson system without a magnetic field, but with the magnetoexciton
magnetic mass my (which depends on H and D) instead of the exciton mass
(m=me +my):

L) = 1 Ur(p-bri,gL
I‘(p, q,L) = UF(p - q) + f (Zfr)’ Kz/mH+(‘;£g:/2m(H€.p%m3+i6’

(2)
p=r?/2mpyg =n.T =n.T(0,0,0).

Here p is the chemical potential of the system (L is the sum and 2p the
difference of the initial magnetic momenta of a pair of excitons, and 2q is the
difference of the final magnetic momenta), and Up(P) is the Fourier transform of
the potential energy U(Ri—R;)=e?D?/|R{ — Ry[°.

At small magnetic momenta P the spectrum of collective excitations is E(P) =
¢s(H, D)P, with the sound velocity ¢, = +/u/myg.

A simple (analytical) solution for the chemical potential u = p(H, D) can be
obtained from Eq.(2), e.g., at rg < D < (r&/nil)1/5:

p=x%/2myg =87n. [Zmy In (1/81rnwm§1e4D4) .

So at fixed n., and in high magnetic fields the sound velocity in the magnetoexci-
ton system (due to my =mg(H,D)) falls off approximately as H~'/2 at D < ry
and as H~2 at D> ry.

The temperature T. of the Kosterlitz—Thouless transition [16] to the su-
perfluid state in a 2D magnetoexciton system is determined by the equation
T, = 0.57h’n,(T.)/kpmg, where n,(T) is the superfluid density of the magnetoex-
citon system as a function of the temperature T, magnetic field H, and interlayer
distance D, and kp is Boltzmann’s constant.

The function n,(T) can be found from the relation n, = nez~ny, (ne; is the total
density, n, is the normal-component density). We determine the normal-component
density by the usual procedure (see, e.g., [17]). Suppose that the magnetoexciton
system moves with a velocity u. At T 0 dissipating quasiparticles will appear in
this system. Since their density is small at low T', one can assume that the gas
of quasiparticles is an ideal Bose gas.

To calculate the superfluid-component density we start by finding the total
current of quasiparticles in a frame in which the superfluid component is at rest.
Using Eq.(1), we can see that the total current of the system is proportional to
the total momentum, with a coefficient that depends on n,. As a result, we have
for the superfluid density

%@ 1

2r ctmyg’

Ny =Neg — Np = Nex —

(3)

Substituting the superfluid-component density n, from Eq.(3) into the equation
above for the Kosterlitz—Thouless temperature, we obtain:
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1/3 /3
maT? muTS T2
Tc = [(1 + (6-0.12)374( Neo ) + 1) + (1 (6 0. 45)31"‘( 7::“ )3 + 1) ](4")173 .
(4)

Here 70 is an auxiliary quantity equal to the temperature 70 at which the
superfluid density vanishes in the mean field approximation; n,(T?) = 0:

o _ 27rnwc‘3mg)l/3
- (Ta™) ©)

In high magnetic fields the Kosterlitz—Thouless temperature is:

T ~ T - 32 13 TNeg (6)
©7 (4m)13 7\ 3¢(3)In%(1/87n..m, D4) my

In high fields H at small P the effective magnetic mass of an exciton on
the lowest Landau level (n = 0) and with quantum number m =0 is given by
myg =232 fery/7 at D < ry and by myg =~ D3/e’*r}; at D > ryg. At large D,
ie., for D> af in weak fields (rg > aj) or for D > rgy in high fields (rg < a3),
one has my =M+ H2D3/c? [7, 12).

T.(6)

8k

5
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2L The Kosterlitz—Thouless transition tempera-
ture T: as a function of the magnetic field
H for different interwell separations D (for

ol AsGa structures)

1
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According to Egs.(4) and (5) the temperature of the onset of superfluidity due
to the Kosterlitz—Thouless transition at a fixed magnetoexciton density decreases
as a function of magnetic field due to the increase in my as a function of H and
D, while T, decreases as H-Y?2 at D rg or as H™? at D> rg, and n, is a
slowly decreasing function of D. The dependence of T, on H is shown in Figure.

From Eqs.(4) and (5) one can see that the Kosterlitz—Thouless temperature
of a dilute magnetoexciton system is proportional to the magnetoexciton density
Neg. At high magnetic fields the symmetrty v — 1 — v, ¢ «— h obtains at the
Landau level. Thus unoccupied states on Landau levels for spatially separated
electrons and holes can bind to “antiexcitons”, and superfluidity of antiexcitons
may also take place at 1 — v « 1. The Kosterlitz—Thouless temperature for
superfluidity of antiexcitons as function of H and D is symmetrical to that
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for excitons. The top Kosterlitz—Thouless temperature at high magnetic fields
corresponds to the “maximum” density n,.; of magnetoexcitons at the Landau
level Nmaz = Vmagl/47r% ~ H, where Vpmgr(D) is the maximum filling of the
Landau level for magnetoexcitons (for antiexcitons the corresponding critical value
is 1 — Vmaz(D)), which obeys Vmqz(D) < 1/2 (it is also possible to have an
excitonic phase of the BCS type, originating from e-h pairing of composite
fermions at v=1/2 [12]). The excitonic phase is stable at D < D..(H) when the
magnetoexciton energy E.qo(D,H) (calculated in [7]) is larger than the sum of
the activation energies E = ke®/ergy for incompressible Laughlin fluids of electrons
or holes; k=0.06 for »=1 etc. [18] (compare [9]). Since k < 1, the critical value
D, >» ry. In this case one has

e? 4
Eexc - 5(1 - ﬁ)

for a magnetoexciton with quantum numbers n=m =0. As a result we have
D, = rg(1/2k — 2k). This estimate is correct for small ¥ when the interaction
between magnetoexcitons is small in comparison with the magnetoexciton energy
E.;.. For greater v it gives an upper bound on D.. The coefficient k& in the
activation energy Er may be represented as k = koy/v. So from the relation
between D., and ry one has

Hence, the maximum Kosterlitz—Thouless temperature at which superfluidity appears
in the system is T ~ n™%*(H,D)/myg ~ VH at D<rg or T™? ~ H-1 at
D >» ry in high magnetic fields. It is of interest to compare this fact with
experimental results on magnetoexciton systems. Note that if at a given density
of e and h and a given magnetic field H several Landau levels are filled (but the
high-field limit 7y < ¢ obtains) the superfluid phase can exist for magnetoexcitons
on the highest nonfilled Landau level.

We have shown that at fixed exciton density n., the Kosterlitz—Thouless

temperature 7T, for the onset of superfluidity of magnetoexcitons decreases as
a function of magnetic field as H-3 (at D ~ rg). But the maximum 7T,
(corresponding to the maximum magnetoexciton densities) increases with H in
high magnetic fields as T™**(H,D) ~ vH (at D ~ ry). This fact needs to
be compared in detail with the results of experimental studies of the collective
properties of magnetoexcitons. The excitonic phase is more stable than the
Laughlin states of electrons and holes (with negligible e—h correlations) at a given
Landau filling v if D < D, =rg(1/2k — 2k), where k is the coefficient in the
Laughlin activation energy. Below the Kosterlitz—Thouless temperature one may
observe the appearance of persistent currents in separate quantum wells. The
interlayer resistance due to the drag of electrons and holes can also be a sensible
indicator of the transition to the superfluid and other phases of the e-h system
12].
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