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The origin of a classical background geometry in quantum vacuum inhomogeneous
master model is investigated. It is shown that the background appears at the moment
when the horizon size has the order of the characteristic scale of inhomogeneity of the
universe and the local anisotropy can be described by small perturbations.

PACS: 98.80.Hw

It is widely recognized that the most realistic models of the early universe have to
contain an inflationary epoch {1, 2]. Such an epoch is known to have the energy scales
H =a fa ~ 1075my much below the Planck energy and at these scales the spacetime is
believed to have a classical nature. In particular, this represents the main base for the
semiclassical description of the early universe {e.g., see Ref. [3] and referencee therein).
However the quantum boundary (the moment of origin of a stable classical background
geometry) is not so well defined as it is commonly believed now. In general the moment
when the spacetime acquires a semiclassical nature has to depend upon initial conditions
and represents, in quantum cosmology, a free parameter.

We note that the problem of the origin of a classical background does not coincide
with the problem of the quasi-classical limit in quantum gravity and cosmology. Indeed,
quantum non-linear inhomogeneous gravitational fields near the singularity was shown to
be described by stationary states [4] (see also the multidimensional case in Refs. [5]).
Therefore, there is no difficulty to construct high frequency wave packets and to consider
the quasi-classical limit in spite the fact how close to the singularity the universe is.
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However the background geometry was shown to be absent near the singularity (it tuns
out to be hidden under pure quantum fluctuations [4]). In fact the moment of the origin
of a background depends upon the particular choice of an initial quantum state and,
therefore, appears as a free parameter. In the present paper we study the origin of a
classical background in a vacuum long-wave asymptotic models [6] L; 3> Ly, where L;,
Ly, are a characteristic scale of inhomogeneity of the gravitational field and the horizon
sizg respectively (we note that in quantum gravity under the horizon size and the scale
of inhomogeneity one should understand corresponding mean values) and show that the
stable background appears at the moment when the horizon size reaches the scale of
the inhomogeneity L; ~ Lj. Such an estimate remains also valid in the quasi-classical
limit. In chaotic inflationary scenarios (2, 7] this means that the inflationary epoch starts
when the semiclassical approximation is not valid. We consider the ADM (Arnowitt—
Deser — Misner) scheme of quantization [8], since in this case we avoid the problem of
the probabilistic interpretation when considering the matter sources and, besides, this
scheme represents the only rigorous way to treat the case when a part of the universe can
recollapse [3].

Near the singularity the behaviour of the long-wave inhomogeneous gravitational field
can be described in the approximation of deep oscillations [4, 6] as follows. The metric
tensor has the representation in the Kasner-like form

3 ~
ds® = N%dt? — R* ) _exp {¢°} (£2dz® + N°dt)?, (1)
a=1
where £2 (z) are Kasner vectors (det £2 = 1) and we distinguished a slow function of time
R which characterizes the absolute value of the metric functions [9, 10] and is specified
by initial conditions (see below). Near the singularity it is convenient to make use of the
following parametrization of the scale functions [6]

¢®=Qalng; D Qa=1, (2)

where the anisotropy parameters Qq and Ing = )" ¢° can be expressed in terms of a new
set of variables 7, y* (i = 1,2), as follows

Quly) = (+2”'A“) lng = —3¢— L+ ¥ @®)

1+ 1-y?’
where A? is a constant matrix, e.g., see in Ref. [6]. The parametrization (3) has the range
y? <land —00 < 7 < o0, (0 € g < 1) and an appropriate choice of the function R allows
to cover, by this parametrization, all of the classically allowed region of the conﬁguration
space.
The evolution (rotation) of Kasner vectors is completely determined by the momentum
constraints {11], while the evolution of scale functions is described by the action (we use
Planck’s units my = 167, see Refs. [4, 6], and fix the gauge N°® = 0)

or, N a2 42 —2r 3
I= /{P +hat S N e V() s, @)

where €2 = 1/4 (1 — y2)” P? and the potential term V = R®g (~R) (*R is the scalar
curvature with the metric (1)) has the following decomposition

k
V=R"Y" Aag°*, (5)
A=1
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where coefficients A4 represent functions of all dynamical variables (and slow functions
of In g) which characterize an initial degree of inhomogeneity of the gravitational field and
Oabe = 1+ Qo — Qb — Qc, b # c. In the approximation of deep oscillations g < 1 this
potential can be modeled by a set of potential walls

- +o00 , o4 <0,
57— blza@l = { 37 TS0

(6)
and is independent of Kasner vectors Vo, = ¥ 000 (Q4)-

By solving the Hamiltonian constraint H = 0 in (4) we define the ADM action reduced
to the physical sector as follows

d
I= / P, - E:"— — Hapm)dzdr, (7)

where Hapm = —h = £v€2 4+ 6e-27V is the ADM energy density and 7 plays the role
of time (+ = 1) which corresponds to the gauge Napm = (3R3\/g/Hapm)e >". The
sign of Hapym depends upon initial conditions and is determined from the requirement
that Hapum represents a differentiable function of coordinates (the positive sign of Hapm
corresponds to expanding regions of the space).

The condition of applicability of the approximation (6) can be written as follows

€2 6e 7V 8)

as Qo > 6 > 0 (6 € 1). Thus, from the condition that the approximation of deep
oscillations (6) breaks at the moment g ~ 1, one finds that the function R should be
chosen as follows R* = (¢2/6))e?” (where A = |3 A4|) and the inequality (8) reads’
g« 1l

The synchronous cosmological time relates to 7 by means of the equation dt =
= Napmdr from which we find the estimate (/g ~ t/to, where to = cLiveL;, L? ~ 1/
is a characteristic scale of the inhomogeneity, € is the ADM energy density (¢ = const),
and ¢ is a slow (logarithmic) function of time {¢ ~ 1 as g — 1). Thus, in the synchronous
time the upper limit of the approximation (6) is t ~ t5. We note that from the physical
viewpoint ¢y corresponds to the moment when the horizon size reaches the characteristic
scale of inhomogeneity and both terms in the Hamiltonian constraint (the kinetic and
potential terms) have the same order.
~ The physical sector of the configuration space (variables y) is a realization of the
Lobachevsky plane and the potential V. limits the part K = {Q, > 0}. Quantization
of this system can be carried out as follows. The ADM density of energy represents
a constant of motion and, therefore, we can define stationary states as solutions to the

‘eigenvalue problem for the set of Laplace - Beltrami operators €2 (z) = A (z) + 1/4P ()
(see Refs. [4, 5])

1
(A+EK+ ZP)%(y) =0, ¢nloxk=0, (9)

where the Laplace operator A is constructed via the metric 812 = h;;éy'dy’ =
r%(4(dy)?/(1-y*)?), r and P are determined through a renormalization procedure (in the
discrete approximation one can define r = (Az)?, P = 1/r2 + 4k?, so that in the ground
state o = 0). The eigenstates , are classified by the integer-valued function n (z) and
obey the orthogonality and normalization relations

(O o) = /K @5 (4) 9 (1) DY) = b, (10)
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where

Du(y) =[] - Vidy z), K =[] K (a)

, and 7 is the volume of K (z). Thus, an arbitrary solution ¥ to the Shredinger equation
18, % = HapmVP takes the form

U =" Anexp(—iHnT)en(y), (11)

where H, = f[knd®z and A, are arbitrary constants (3", | An |*= 1) which are to
be specified by initial conditions. The probabilistic distribution for variables y has the
standard form P (y,7) = |¥ (y,7)|> which coincides with that one in Ref. [5] derived
on the base of the Newton-Wigner states. The function n (z) plays the role of filling
numbers for frozen non-linear gravitational waves whose wave-lengths exceed the horizon
size (the density of excitations for the local anisotropy [4, 12]). The eigenstates ¢, define
stationary (in terms of the anisotropy parameters @ (y)) quantum states and describe, in
the case of H, > 0, an expanding universe with a fixed energy density of the anisotropy.

For an arbitrary quantum state ¥ one can determine the background metric (ds®).
However such a background is stable and has sense only when quantum fluctuations
around it are small. In the case of g <« 1 fluctuations well exceed the average metric and
the background is hidden {4]. Indeed in this case for the moments of scale functions one
can find the estimate (in the same way as in Ref. [5])

(@) = (R"97%) ~ Di(m, ) exp (427, (12)
where the function D; (m, ) depends upon the choice of the initial quantum state.
Consider now an arbitrary stationary state @, which gives the stationary probabilis-

tic distribution P (y) = |@n|*. In this case D = bk,™/2 (L:"‘I 2) is a constant, where

n

the characteristic scale of inhomogeneity (L:"/ 2) is determined via the momentum con-
n
straints and b comes from the uncertainty in the operator ordering. Thus, for the intensity

of quantum fluctuations one finds the divergent, in the limit ¢ — 0 (» = —o00), expression
(%) = ((az) /{a)® — 1) ~ e~%?7 which explicitly shows the instability of the average
geometry as g < 1. The intensity of quantum fluctuations reaches the order § ~ 1 at the
moment ¢ ~ (L?/ 2) Vkn (g ~ 1) when the anisotropy functions can be described by

n
small perturbations a? = R? (1 + Q;Ing + ...) and the universe acquires a quasi-isotropic
character. This moment can be considered as the moment of the origin of a stable classical
background.

Consider now the case of quasi-classical states. Classical trajectories of this system
were shown to have a chaotic behaviour [6] and this leads to an additional quick spreading
of an arbitrary initial wave packet (e.g., see Ref. [13] and references therein). An arbitrary
initial quantum uncertainty increases as AT’ ~ ATgeS, where S = (7 — 7o) is the geodesic
path, and quickly reaches the maximum value [,; ~ 272 {H) (where [p,,. is the phase
volume)?. Thus the picture in which the center of the wave packet traces a classical
trajectory remains valid during the period A7 = In(T'jn4z/Alg). In quantum theory the

2 When AT ~ I'mqr the exponential behaviour is replaced by a power law [13], however this does
not significantly change all the subsequent estimates.
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minimum value AI'g ~ 1 and hence one finds A7y,e; ~ In n where 7 is the average
density of excitations corresponding to the energy (H). After the period ATpa, the
function D; (m, 7) in (12) becomes almost constant and we have the situation described
earlier.

We point out to the fact that the period Arn,, can be arbitrary large (that depends
upon a particular choice of initial conditions). This means that in the problem of a
cosmological collapse the picture in which the universe is a classical object can be valid
up to arbitrary small times t <« t,;. However in the problem of the cosmological expansion
the universe spends infinite period of time 7 starting from the singularity and, therefore,
an arbitrary initial wave packet will spread over the whole configuration space and the
classical picture is invalid.

In conclusion we stress that in the presence of matter the quantum evolution of the
inhomogeneous universe requires a separate consideration, however the general fact is that
the stable background appears at the moment when the local anisotropy can be considered
as perturbations.
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