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A peculiarity of the single-electron transistor effect makes it possible to observe this
effect even in structures lacking a gate electrode altogether. The proposed method can
be useful for experimental study of charging effects in structures with an extremely small
central island confined between tunnel barriers (like an ~1 nm quantum dot or a macro-
molecule probed with a tunneling microscope), where it is impossible to provide a gate
electrode for control of the tunnel current.

PACS: 73.23.Hk, 73.61.-r

By definition, a device called a “transistor” should have three terminals. One of them
(the gate) is meant to control the current flowing between the other two. The same
can be said for the case of a single-electron transistor (SET). The main objective of
this paper is to prove that just two terminals are sufficient for studying the SET effect
in experiment, provided that the voltages applied to these two are held in a special way.
Thus in the particular case of the SET, the transistor effect (TE) can be studied in systems
which are not transistor devices. Although this simplification may be of no immediate
use for the electronics industry, it is of importance for basic physical experiment. Here
interesting and physically rich mesoscopic systems can be prepared artificially [1] or
grown naturally [2]. But the nanometer size of these systems makes fabrication of the
gate another challenging problem (if it is feasible at all).

We illustrate the main idea using as an example the semi-classical “orthodox” approx-
imation {3] for the description of the SET dynamics of systems with a purely conductivity
between tunnel metallic electrodes. In the closing section we argue that the same two-
terminal method is much more generally applicable.

Consider the charge-quantized double-barrier structure in Fig.1, which is called a
SET. The total charge ne confined on the central island is a good macroscopically ob-
servable quantum number provided that e?/C > kpT and R > h/e? ~ 4.1 k), where

= = Cp + C + C; + C,. Traditionally a gate with a capacitive coupling C, is present
and allows for modulation of the current flowing between terminals V; and V2. The mod-
ulation is due to the change in charge induced on the central island by a change in the
gate voltage V. This is the conventional TE.

The gate may be absent from a particular structure. In Fig. 1 this case is indicated by
the dashed lines around the gate. Here we can get the same modulation effect by making
use of a “hidden” gate, which is the self-capacitance Cy of the central island. For this we
introduce a common background —v added to both voltages V; and V; simultaneously.
We will see that by changing the voltage v it is possible to observe the same TE, and
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Fig.1. Charge-quantized double-barrier structure.
Junctions with tunnel resistances Rj, and ca-
pacitances Cj,2 are shown as boxes. The self-
capacitance Cp of the central island is shown as
a capacitor connected to a point with zero poten-
tial. The gate with capacitive coupling Cy may be
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Fig.2. Single-electron transistor effect. Current
I, defined by Eq. (4), versus the partial polariza-
tion g, defined by Eq. (8), at different transport
voltages VC/e, starting at 0.2 at the bottom with
increments of 0.2. kT = 0.05¢/C, C1 = 0.7C,
C2=01C,R2/R1 =10, R=R1 + Ry

absent from the system

for structures on the nanometer scale the efficiency of this v control is approximately the
same as would be expected for the best possible conventional gate.

Thus we are going to exploit an unusual feature of the SET. When it has a gate (and
looks like a 3-terminal structure) it in fact has 4 terminals. The effective fourth terminal
is an infinitely remote point traditionally viewed as having zero potential. When a SET
does not have a regular gate (and looks like a 2-terminal structure), it is effectively a 3-
terminal device, and it is still possible to observe the TE, this time with a special voltage
setup.

Effective additional gate. The total charge ne confined on the central island (see
Fig. 1) determines its electrostatic potential ¢(n):

en+ gy = Cp(n) — C1 Vi — Ca V3 —CgV_q. (1)

Here g; is a background charge: g5/C is the contribution to the potential ¢ of the central
island from charged contaminants present in the vicinity of the island.

Eq.(1) implicitly uses the “fourth terminal”. The infinitely remote point used in a
definition of the self-capacitance [4] is assumed to be at zero potential. The natural choice
(employed in Eq.(1)) is to have zero potential on an isolated uncharged body. This choice
fixes the gauge. The zero point of the potential is no longer arbitrary, and the value of
the potential (and not just of the potential difference) acquires absolute meaning.

In other words, the self-interaction of the central island (measured by the self-
capacitance parameter) is equivalent to interaction with a dedicated point of fixed po-
tential. The most natural choice for such a point is at infinity (and the natural choice
for the fixed potential value is zero). So the existence of this self-interaction is equivalent
to the fact that our system has a very special point with fixed potential. This special
point can be regarded as a “hidden” voltage terminal in our system. We will see that the
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voltage parameter —v applied to both current terminals is measured relative to precisely
this hidden terminal. This can be alternatively regarded as applying a voltage +v to the
hidden terminal, which will imitate one additional v voltage-driven gate.

Orthodox approximation. The free-energy costs of increasing (+) or decreasing
(—) the initial number n of electrons on the central island due to a single-electron tunneling
event (n — n £ 1) in junction 1 or 2 are:

FH(n) = Fyp—Fy=zxelp(n+1/2)]FeVy, =
+(e/Clgp Lt e/2+en+ CyVy +
+C1Vi + GV — CV0). (2)

where Ffz < 0 (> 0) corresponds to an energetically favorable (unfavorable) event. The
dissipation of this energy is part of the tunneling event and distinguishes macroscopic
tunneling (considered here) from textbook quantum mechanical tunneling. For a given
n, the tunneling rates in each junction are expressed (3] by
) = 1
n)= .
1.2 €’Ri2 1 — exp [Fi5/(ksT)]

(3)

A statistical distribution p(n) of charge states n is established when the external
voltages are constant. The current I; through tunnel i in the direction from Vi to V,
equals

Lz = :‘:GZP(") [, (n) =T, (n)], (4)

where sum goes over all n for which p(n) > 0. Kirchhoff’s law, I} = I, holds in the
steady state and demands that the distribution p(n) should not change in time. More
precisely, simultaneous detailed-balance equations [5] should hold for all n:

p(mT* () =p(n+1T~ (n+1), (5)

with T% (n) = I (n) + TS (n). For any fixed combination of parameters Co, Cy, Cy, Cy,
R;, Ry, V1, V2, V,, @, and T, using Eq.(2) and (3), we can solve Egs. (5) for the statistical
distribution p(n). We can then calculate the current I from Eq. (4) as a function of these
parameters.
Periodic modulation of the current. Consider the one-to-one mapping {Vi, V2}
< {v, Vh
Vi=V—-v, Vy=-—v, (6)

so that Vi — Vo = V always. In experiment this means that the voltages Vi and V; are
generated (according to Eq.(6)) by an operational amplifier or computer starting from
two independently controlled parameters: V and v. By changing v independently of V
and other parameters of the system, we hope to reproduce the TE when the gate is absent
completely (Cy = 0).

After applying transformation (6) to Eq. (2), we get:

Fi5(n) = £(e/C) (xe/2+ K12V +en +q), (7)
with K; = —(Cp + Cy + C3), K3 = C}, and partial polarization

9= + CyVy + (Co + Cy)v. (8)
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recall that the four expressions Ff’f2 (n) determine the probabilities p{n), current I, and
all other measurable values.

An essential feature of Eq. (7) is that both ¢ and n enter all four forms Ff,tz(n) in
exactly the same combination en + q. As long as all other parameters of the system are
kept constant, the simultaneous substitutions

{g—oq+e, non-1} (9)

leave the combination en + ¢ invariant. So the whole set of [Ff,z(n), I‘fz(n), and p(n)]
for all n is covariant with the shift (9). From Eq. (4) we see that the current I remians
invariant under the change (9). And this just means that the current is periodic (Fig.2)
in ¢ with a period
Jperiod = €. (10)

Note that K3 and K, in Eq. (7) are always different. They even have different sign.
Therefore, there can be no periodicity in V.

In traditional (3-terminal) experiments a monotonic change of g is achieved through
a change of the gate voltage V,. The resulting current modulation with a period

Vq period = e/Cg (11)

is known as the single-electron TE.

Alternatively, the same effect can be obtained if the parameter v is changed with all
the other parameters held constant. From Egs. (8) and (10) we see that in this case
current is modulated with a period

Uperiod = e/(Co + Cg) (12)

If both parameters V, and v are changed simultaneously, the current is modulated
with the period (10).

Two-terminal device. From Eqgs. (7) and (8) it is clear that pairs {C,, V,} and
{Co + Cy, v} play similar roles in SET dynamics. This means that if the system under
study lacks a gate Cy completely (Cy = 0), one can still study the TE experimentally,
but now with the parameter Cy as the effective gate, the parameter v as the effective gate
voltage, and the modulation period vperioa given by Eq. (12).

It can often happen that an interesting two-terminal double-barrier structure [1] is
fabricated in a way which precludes placing a nearby gate with the sufficiently large C,.
Indeed, in demonstrating periodic modulation of the tunnel current one usually needs
to restrict the voltages to the range Vy < 1V, just to preserve the mechanical and
electrical stability of the systems under study. Larger voltages may cause redistribution
of the surrounding charged contaminants (changing the background charge g3) and trigger
processes such as electromigration. To have Vg period < 1 V, we need Cy > 0.1 aF. This
is hard to achieve for a central island of small dimensions. If a central island has a radius
r ~ 1 nm, as in [1, 2], and a gate is separated from it by a distance d, then the gate
capacitance can be estimated as Cy =~ e.geonr?/d. To get C, < 0.1 aF, the separation
should be d > 2 nm (with eeg = 10). It is very hard to make or find that narrow a
separation which is not short-circuited and is not a tunnel junction. Recall that the
typical thickness of a tunnel barrier is about 1 nm.

This challenging goal was achieved in [2] by a complicated and unpredictable method
of gate fabrication. The authors began with lithographic deposition of a gold gate having
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a highly branched form. The gate was isolated from the conducting substrate. Then
they covered the structure with a Langmuir film, containing conducting cluster molecules
with radius 7 ~ 1 nm. Some (very few) of the clusters happened to lie on the substrate
within a distance d > 2 nm from the gate. Such clusters were sought out with a scanning
tunneling microscope and were then used as the central island of a SET (substrate-cluster—
microscope tip). This SET was successfully modulated by the gate at room temperature.
An estimate according to Eq.(11) gave Cy, = 0.2 aF.

The self-capacitance of a central island with radius r = 1 nm can be estimated as
Co = Eegreor ~ 0.1 aF. And Eq. (12) gives vperioa = 1 V. In real systems the current
leads can screen off some of the environment from the central island, thus reducing Cy
and increasing vUperiod. However, estimates made for known practical setups always gave
a reduction of Cp by a factor of less than 10. Thus from Eq. (12) we can expect a
value Uperiod =~ 0.3 V for the same structure. This means that the authors of [2] might
have demonstrated v modulation with a period (12) at the same room temperature, even
without fabricating a complicated gate or searching for a cluster molecule which had
accidentally stuck at an appropriate position.

Consider a SET with a quantum dot as the central island [1]. Due to spatial quantiza-
tion of the wave function of an electron confined on the central island, full capacitance C
is no longer constant but depends on the charge ne, voltages, temperature, and the bulk
and surface properties of the environment [6]. But even with variable C, the energy cost
of tunneling depends on the polarization of the central island, and this polarization can
be achieved by changing the voltage v in a two-terminal device. Thus charge quantization
in a quantum-dot SET can be controlled by this effective gate.

Other mechanisms of electron transport (like co-tunneling [7], or thermal activation
above the trapping barrier [8]) may contribute to the current. In either case the current
is periodically modulated with respect to the polarization of the central island, which in
turn can be achieved by changing either V; or v.

A similar method can be used to control current through charge-quantized chains
of tunnel junctions, in particular, through self-selecting chains of granules in disordered
systems [9)].
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