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Local M-operators for the classical sine-Gordon model in discrete space-time are con-
structed by convolution of the quantum trigonometric 4x4 R-matrix with certain vectors
in its "quantum” space. Components of the vectors are r-functions of the model. This con-
struction generalizes the known representation of continuous time M-operators through
classical r-matrix.

PACS: 11.30.Na

1. Soliton equations are integrable hamiltonian systems [1], with Poisson brackets
for Lax matrices having a unified form in terms of (classical) r-matrix. An alternative
approach [1], [2] consists in representing soliton equations as 2D zero curvature (ZC) con-
ditions for a pair of matrices called L and M-operators depending on a spectral parameter.
Although this method avoids any reference to the hamiltonian aspects, the r-matrix arise
here, too, as a machine to produce M-operators from L-operators. Let us recall how it
works.

Let £;(z) be a classical ultralocal 2x2 L-operator on 1D lattice with the periodic
boundary condition Liyn(2) = Li{z); z is the spectral parameter. The monodromy
matrix is 71(2) = Liyn-1(2) ... Li41(2)Li(2). Hamiltonians of commuting flows are ob-
tained by expanding logT'(z) in z, where T'(2) = tr 7;(z) does not depend on ! due to the
periodic boundary condition. All these flows admit a ZC representation. The generating
function of corresponding M-operators is [3, 1]

M(z;w) = T~ (w) try [r(z/w)(Ti(w) @ 1)), @

where r(z) is the r-matrix (of size 4x4) acting in the tensor product of two 2-dimensional
spaces, tr; means trace in the first space, { is the unity matrix.

A way to construct local M-operators from (1) is well known [4, 1, 5]. Suppose there
exists zo such that det £;(29) = O for any [, so £;(z¢) is a projector:

) B a '
e = R - (2). 1= .69, &)
Here ); is a scalar normalization factor. Then M;{z; 29) is a local quantity:

r(z/z0)|u-1)
(Bi|ou-1) .

The scalar product is taken in the first space only, so the result is a 2x2 matrix. It obeys
the ZC condition 8,L£;(z) = My41(2)Li(2) — Li1(2)Mi(z) with the spectral parameter.

Mi(2) = Mifziz0) = 3)
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The goal of this work is to extend eq.(3) to M-operators for discrete time flows in
Hirota’s 2D partial difference equations [6-8]. We follow [9,10], treating the discrete
equations as members of the same infinite hierarchy as the continuous ones.

Let us outline the results. In the discrete case r(z) in (3) is substituted by quantum
R-matrix. Specifically, the following representation of discrete M-operators M;(z) holds:

(Bi|R(2/20)|B1-1)
(Bilau-1) ’

(hereafter o; are Pauli matrices). In the r.h.s., R(z) is a quantum 4x4 R-matrix to be
specified below with the ”quantum” parameter g related to the time lattice spacing. A
similar formula for the L-operator itself is valid with another quantum R-matrix R(~(z):

_ BB (2/20)|eut)
L@ =gy )

The vectors |o;) and |8;) are the same as in eq.(3). In the language of the algebraic
Bethe ansatz [11, 3], the scalar product is taken in the "quantum” (vertical) space, so one
gets a 2x2 matrix in the "auxiliary” (horizontal) space:

(s

e -

|«

The M-operator (4) generates shifts of a time variable m. The ZC condition

Mir1,m(2)Lim(2) = Limy1 (2)Mim(2) (6)

gives rise to the discrete soliton equations from {6, 8).

The change of dynamical variables to the pair of vectors |ar), |3;) plays a key role.
Using equations of motion of the discrete model, we show that (suitably normalized)
components of the vectors |ay), |81) are T-functions (on T-functions see e.g. [12]).

In this paper we elaborate the simplest example - the lattice sine-Gordon (SG) model.
There are two lattice versions of the classical SG model: the model on a space lattice with
continuous time (5,13} and Hirota’s SG equation on a space-time lattice [8]. They have
common L-operator. The M-operators are given by (3) with the trigonometric classical
r-matrix for the former and (4) for the latter, with R(z) being the simplest trigonometric
solution of the quantum Yang - Baxter equation (the R-matrix of the X X Z spin chain).

2. By the SG model on a space-time lattice we mean the Faddeev- Volkov version
{14, 15] of Hirota’s discrete SG equation [8]. This is a non-linear equation for a function
¥ (u,v) on the 2D square lattice. Let

Mi(z) =

|3) = a1|8) (4)

—C=(uv+1)

D=(u+1lv+1)

A = (u,v) B=@w+1v) ——
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be an elementary cell of the u,v-lattice. In this notation the equation reads

vcp — vathe = p(¥BYp — pate), (7

where p, v are constants. It contains both KAV and SG equations as different continuum
limits. Eq.(7) can be represented [14] as the ZC condition Lp. g(z;v)Lpa(z;p) =
Lpec(z; u)Lewa(z;v) with the L-matrix [14, 16]

3.—% -4 -4

. I“/’B‘/’A z¢3 '¢A
Lpa(zip) = . (8)

whvi  wptel
We call | = £(u +v), m = Z(u — v) discrete space and time coordinates respec-
tively. Consider ”composite” L and M-operators generating §hifts A = D and
C — B respectively: Lpea(2) = 27 Lpec(z;p)Localz;v), Mpec(z) = 27422 —

v2)Lpealz; 1) [Loealz; v)] ™", From (8) we find:

[ pewbupt +veiwdont ug! (wheat +mdupt) )
éD(—A(ﬂZ): )
\ o (wohup? +undei?) bt +ueedupt
A (wevbegt —vtwbuct ext (whvct - wleit) )
Mpec(pz) = , - (10)

| \ va (wodva? -mwdvct)  wewduct - vetvbep?

The L-operator of the lattice SG model with continuous time [5] at I-th site is?

ﬂmm=(

x4 2 1x s"iom
(11)

s“*cpnr,"l x4+ 27

Here m, x; are exponentiated canonical variables, ¢; = [1 +s(x + x5 2)] Y 2, s is a
parameter. To identify the L-operators (11) and (9), consider composite fields w(u,v) =
P2 (u + 1,0)9 2 (u,v + 1), x(u,v) = P /?(u,v)p~/2(u + 1,0 + 1) and set 7, = w(l,1),
x: = x(1,1) at the constant time slice m = 0. Identifying s = uv(u? + v*)~! and using
eq. (7), we conclude that ﬁfu{)(z) = (uv)~V2L,((uv)/22). Here Li(2) = Lp,ea,(2)
where 4; = (1,1), D; = (I + 1,1 + 1). Similarly, we write MBu——A, (z) = My(z), where
By = (I+1,1-1). Then the discrete ZC condition acquires the form (6). The L-operator
ﬁf”") (2) has two degeneracy points z& = (u/v)*% at which it is a projector (2) with the
r.h.s. expressed through the field ¥ (u,v).

3. The idea of Hirota’s approach [7] is to treat eq.(7) as a consequence of 3-term
bilinear equations for 7-functions (see also [10,17]). In the case at hand we need two
7-functions: T and 7. Set
_ Tu,v)
©(u,w)’

¥(u,v) (12)

1) We take the L-operator from [5] and multiply it by o from the left to deal with eq. (7) rather than
Hirota’s equation.
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then eq. (7) follows from
(v — w)faTp = v1eTc — piBTC, (Vv — p)TaTp = vigTC — PTBTC . (13)
The equivalent form of these equations,
(v + w)teTc = uta®p + viaTD, (V+ p)iBTC = pPfaTp + UTA'f'D , (14)
is equally useful. At last, we point out the relation
7(u — Lv)i(u+ 1,v) + F(u — 1,v)7(u + 1,v) = 27(u, v)7(u,v) . (15)

A few remarks are in order. Egs. (13) form a part of the 2-reduced 2D Toda lattice
hierarchy [18], where u, v are Miwa’s variables [9]. They play the role of inverse lattice
spacings for the elementary discrete flows u, v. Lattice spacing in the m-direction is then
(uv)~(p — v). Note that the u,v-coordinate axes are in general not orthogonal to each
other. In particular, as it is seen from egs. (13), at 1 = v one must identify u with v, so
the 2D lattice collapses to a 1D one. In this sense (15) follows from (14) at v = p.

4. We are ready to represent the M operator as a convolution of quantum R-matrix
with some vectors in its ”quantum” space. Consider quantum R-matrices

R®)(z:q) = (a(z) £ b(2))I ® I + (a(2) Fb(2))os ® 03 + c(01 ® 01 + 02 ® 02), (16)

where a(z) = qz—q 27, b(z) = z— 27!, c=q—q7!, ¢ is a "quantum” parameter and
z is the spectral parameter. The R-matrices R(*) and R(~) differ by Drinfeld’s twist.
Both of them satisfy the quantum Yang—Baxter equation (in Sect.1 R(z) = R(Y)(2;q)).

Let |a), |8) be two vectors (see (2)) from the first ("quantum”) space. Consider
the convolution (ﬁ IR(i) (2;q Ia in the first space. This is a 2x2 matrix in the second
(”auxiliary”) space:

ﬂ(l)a(l)a(z) + ﬂ(z)a(z)b(z) /B(Z)a(l)c(z)
(B|R®) (25 9)|a) =
ﬂ(l)a(2)c(z) iﬂ(l)a(l)b(z) + ﬂ(z)a(z)a(z)
(17)
Let us compare this with r.h.s. of egs. (9), (10). To do that, we write elements of the L
and M-operators in terms of the 7-functions (12) and after that use eqs. (13), (14) when

necessary. The best result is achieved after the simple gauge transformation

s \1/2 2 \1/2
Laco@) = (22) Lpea), Msﬁc(z)=(:g;g) Mseo(z). (8

Omitting details, we present the final result. Set (a| = (r, %), (B I ,qg=pfv. At
the slice m = 0 we have

2uV (Bi| R\ (2 9)|ou) _ 2w (BB (2:9)|Bi-1)
Li(pz) = — (ﬂz|at—1> , My(uz) = . Gilars) ,

where the notation from the end of Sect.2 is used. Up to the constant prefactors these
formulas coincide with the ones announced in Sect. 1. Location of the vectors

= (Faitn ) = (7000 ) )
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is shown in the fig.1:

The normalization factor in eq. (2) is equal to A, = uv(u — v) 717 (l,)7(1,1).

5. At last we show that the r-matrix formula (3) is a degenerate case of eq. (4). A
naive continuous time limit would be v — p, i.e.,, ¢ = 1, so, in agreement with eq. (3),
we do get the r-matrix. However, this would imply lim,_,, | By = |oz) that is certainly
wrong in general. The naive limit does not work since the L-operator itself varies as
v — p. In the correct limit, the time lattice spacing must approach zero independently of
p, v.

Let us introduce v' — another "copy” of the discrete flow v- with Miwa’s variable v/,
so now we have a 3D lattice. Equations of the type (13) are valid in the 2D sections
v’ = const, u = const, v = const. Now we can tend v — p leaving v unchanged.
Set ¢ = u/v' = 1+¢e+ O(e?), € = 0, where ¢ is the lattice spacing in the direction
m' = 1/2(u — v'). The discrete M-operators are defined up to multiplication by a scalar
function of z independent of dynamical variables. It is convenient to normalize the M-
operators by M;(z) = I at € = 0. Then the next term (of order €) yields the continuous
time M-operator. To find it, we expand in ¢ the discrete M-operator M 3;4—0;(2) which
generates the shift (I — 1,1,1) — (,1,0) on the 3D lattice with coordinates (u,v,v').

Fig.2 displays the u,v’-section. Coordinates of the vertices are: A} = (I - 1,1,0),
B = A = (,1,0), C] = (1-1,1,1), D; = (1,1,1). The point C| tends to the point
B] = A; as v = p, so the parallelogram collapses to the u-axis. We have: M Bl«C} (z2) =
I + eMi(z) + O(€?), where

1 1y T(=L0F (41 r=1,0)r(+1,l

1 5(z+277) r(l.t%ﬂu) r(ugi%uj

= 1

-z FU=1,D)7(+1,0 1 1y F=1,D)T(+1,
= (T (] 3(2+z )Jj_LL_ZT e

The r-matrix is r(2) = lim.0e 7} [(z + 271)T'RM)(2;¢') - I @ I], s0

Mi(pz)

(21)

r(z) = 5(—2_1-——7_-1—5 [(e+2 ) ®I+20) ®01+20: @02+ (2 +2 1 )o3 ®0a3] . (22)
Comparing with (21), we get (3) with the r-matrix (22).

6. The main result of this work is the R-matrix representation (19) of the local L-M
pair for the classical SG model in discrete space-time. In our opinion, the very fact that
the typical quantum R-matrix naturally arises in a purely classical problem is important
and interesting by itself. It would be desirable to clarify a connection with the quantum
Yang — Baxter equation (which already arised in purely classical problems in a different
context [19,20]). We should stress that the "quantum” parameter q of the R-matrix in
our context is related to the mass parameter and the lattice spacing of the classical model.
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discussions and critical remarks. Discussions with O.Lipan, I.Krichever and A.Volkov are
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