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A perturbation-theory framework is developed for calculation of the characteristics of
the #t%~ atom on the basis of the field-theoretical Bethe-Salpeter approach. A closed
expression is obtained for the first-order correction to the 7+x— atom lifetime.

PACS: 03.65.-w, 13.75.Lb, 14.40.Aq

Experimental studies of the hadronic atoms nr [1], 7p, and wd [2] have now been
carried out. The first estimate of the #+7~ atom lifetime was given in Ref. [1]. The
DIRAC collaboration is now designing an experiment at CERN for the high-precision
measurement of the lifetime of 77~ atoms. This experiment might provide a decisive
improvement in the direct determination of the difference of the S-wave 7 scattering
lengths and thus serve as a valuable test for the predictions of chiral perturbation the-
ory (3]. In view of these experiments there arises a need for a theoretical framework which
would enable one to calculate the characteristics of such atoms with a high accuracy on
the basis of the ideas of standard model.

The theoretical study of hadronic atoms starts from Refs. [4-6], where the nonrela-
tivistic formulas for the lifetime of a hadronic atom and the shift of its energy levels due to
the strong interactions are obtained, which relate these quantities to the strong scattering
lengths. The expression for the width I of the 777~ atom in the ground state is
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where Am,, is the m,+ — m o mass difference, and ¢g is the value of the Coulomb wave
function (w.f.) of pionium atsthe origin.

~ The approach to the problem of hadronic atoms which was developed in Ref. [4] makes
use of a general characteristic feature of hadronic atoms — the factorization of strong
and electromagnetic interactions. Formula (1) demonstrates this factorization property
explicitly, expressing the atom lifetime as a product of two factors: the Coulomb w.f. at
the origin, and the strong interaction factor, which is completely concentrated in the n=
strong scattering lengths.

~ The problem of evaluation of the electromagnetic and strong corrections to the basic
formula (1) within different approaches is addressed in Refs. [7-14]. For a brief review
see Ref. [12]. In that paper we derived the relativistic analog of formula (1) within the
Bethe-Salpeter (BS) approach, taking into account the first-order correction due to the
displacement of the bound state pole position by the strong interactions (strong correc-
tion). This correction was found to be of relative order 10~3. It should be stressed that
the field-theoretical approaches [10, 12-14] to the problem, unlike the potential treat-
ment (7, 11], do not refer to the concept of a phenomenological strong interaction mm
potential, which is a source of additional ambiguity in calculations of the characteristics
of hadronic atoms. In the former approaches these characteristics are expressed directly
in terms of the underlying strong-interaction (chiral) Lagrangian, and the results can be
compared to experiment, providing a consistent test of the predictions of the chiral theory.

In the present work we suggest a relativistic perturbation-theory framework for the
calculation of the energy levels and lifetime of hadronic atoms. The main purpose of
this work is to demonstrate the possibility (not only in potential scattering theory but in
the BS treatment as well) of the clear-cut factorization of the strong and electromagnetic
interactions in the observable characteristics of hadronic atoms, thus avoiding the double-
counting problem in the calculation of these quantities. It should be noted that the
suggested approach allows one to calculate the strong and electromagnetic corrections in
all orders of perturbation theory. At the present stage we apply the general formalism to
the calculation of the first-order strong and electromagnetic corrections to the pionium
lifetime. The results for the strong corrections obtained in Ref. [12] are reproduced in
these calculations.
Our approach is based on a perturbation expansion about the solution of the BS

equation with a Coulomb kernel similar to that introduced in Ref. {15]:

Ve(p,q) = vu(p) dimye” —=Vw(q), w(p) = vmZ + p? (2)

(p - q)?

The factor /w(p)w(q) introduced in the kernel (2) enables one to reduce the BS equa-
tion with such a kernel to the exactly solvable Schrodinger equation with the Coulomb
potential. Then the exact solution of the BS equation with this kernel is written in the
form
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where v = mya/2, M *2 = m2 (4 —a?) is the eigenvalue corresponding to the unperturbed
ground-state solution, and Gy denotes the free Green’s function of the 7+~ pair. The
exact Green’s function corresponding to the Coulomb kernel (2) is given by the well-known
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expression

Ge(P*;pq) = (2m)48W(p - g)Go(P*;p) + Go(P*;p)Tc(E*;p,9)Go(P*;q).  (4)

Here T¢ is given by

1 —v
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where v = ay/m,/(—4E*) and E* = (P** — 4m2)/(4m,).

The full BS equation for the atn~ atom w.f. x(p) is written as

) 2, M
D(p;p,q) P-a) 1B

G5 (P = [ (;i—ﬂl;qV(P;p,Q)x(q), (6)

where V(P;p,q) denotes the full BS kernel, which is constructed from the underlying
(effective) Lagrangian according to the general rules and includes all the strong and
electromagnetic two-charged-pion irreducible diagrams. In particular, it contains the
diagrams with two neutral pions in the intermediate state which govern the decay of
the 7*7~ atom into 7%#°. Note that in addition V(P;p,q) contains the two-particle
reducible charged-pion self-energy diagrams attached to the outgoing pionic legs (with
the relative momentum ¢). These diagrams arise in the definition of the kernel V(P;p, q)
because the free two-particle Green’s function instead of the dressed one is used in the
left-hand side of Eq. (6). The c.m. momentum squared P? of the atom has a complex
value, corresponding to the fact that the atom is an unstable system. According to the
conventional parametrization, we can write P? = M2 = M? — iMT where M denotes the
“mass” of the atom, and I is the atom decay width.

The full four-point Green’s function G(P) for the kernel V has a pole in the complex
P? plane at the bound-state energy. The relation between the exact w.f. x(p) and the
Coulomb w.f. ¢ is given by [12]

(x| = C{¥c| G5 (P*)G(P), P** - M**, P? - M? ()

where C is the normalization constant. In what follows we assume that the limiting
procedure is performed with the use of the prescription [12] P*? = M*? + )\, P2 =
M? + X\, A — 0. The validity of Eq. (7) can be trivially checked by extracting the
bound-state pole in G(P) and using the BS equation for 9¢.

In order to perform the perturbation expansion of the bound-state characteristics M
and I’ about the unperturbed values, we, as in Ref. [12], split the full BS kernel V into

two parts as V = Vo + V' and consider V' as a perturbation. It can be shown that Eq.
(7) is equivalent to

(x| = —C 7 el[L+ (MGG - V')GrQ) AGy! =G (P) - G5H(P*) (8)
With the use of Eq. (8) the following identity is easily obtained

@el[1+ (AGy! - V')GrQ) THAGS! — V) |ye) =0, 9)
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which is an exact relation and serves as a basic equation for performing the perturbation
expansion for the bound-state energy.

In Egs. (8) and (9) Gr@ stands for the regular (pole-subtracted) part of the Coulomb
Green’s function (4), projected onto the subspace orthogonal to the ground-state un-
perturbed solution. This quantity can be further split into two pieces, according to
GrQ = Go(M*) + 6G. Here the function §G corresponds to the ladder of the exchanged
Coulomb photons and thereby contains explicit powers of a. It is given by the following
expression:

66 = iv/aTDTO@ |#(6, ) - SBIS(@) s gz |Gl IGu(M*,0)
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where the ellipses stand for the higher-order terms in . The integral Ir(p, q) is given by
r d 1
In@:a) = [ % (D7 (pip,@) - D Oip, @), B = —gmec? (11)
0

Equation (8) expresses the exact BS w.f. of the atom in terms of the unperturbed w.f.
via the perturbation expansion in the perturbation potential V’. This potential consists
of the following pieces.

1. The purely strong part, which is isotopically invariant. This part survives when
the electromagnetic interactions are “turned off” in the Lagrangian.

2. A part containing the diagrams with finite mass insertions, which are responsible
for the m,+ — m, o electromagnetic mass difference.

3. A part containing the exchanges of one, two, ... virtual photons and an arbitrary
number of strong interaction vertices.

Note that the terms 1 and 2 are more important, for the following reasons. The first
term includes the strong interactions, which are responsible for the decay of the pionium.
The second term makes this decay kinematically allowed due to the finite difference of
the charged and neutral pion masses. Consequently, it seems to be natural to consider
pieces 1 and 2 together. We refer to the corresponding potential as Vi3. The T matrix
corresponding to the potential Vy; is defined by T12(P) = Vi2(P) + Vi2(P)Go(P)T12(P).
The rest of the potential V' is referred as V3 = V' - Vj2. In what follows we restrict
ourselves to the first order in the fine structure constant o, i.e., we consider the diagrams
with only one virtual photon contained in Vj.

Returning to the basic equation (9), we expand it in a perturbation series, treating
Vi and 8G as perturbations. Meanwhile we expand AG;! in a Taylor series in 6M =
= M — M* and make the substitution M = M* + AE® + AE® — /271 — /2T 4
+(8M*)TITW? 4

Restricting ourselves to the first order of the perturbation expansion, we arrive at the
following relations:

i 1 . T
AE® = Re (2]"4* IE¢0) —§F(1) =Im (21"/[* 12 ¢0> (12)
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Hereafter we use the local approximation for T2, assuming that it does not depend on
the relative momenta. Equations (12) coincide with the well-known Deser-type formulas
for the energy-level shift and lifetime [4]). Note that on the mass shell

Re(iTi2) ~ T(ntn~ = ntx7), Im(iT12) ~ v/ Amq|T(xt 7~ — 7°x0)%. (13)
If we assume V3 = §G = 0, we arrive at the result

T2 9AEWM

1
- = 0. E =—-= "2_
D 8 E, 0.763a, where F 7 (14)

The first term of this expression, called the “strong correction”, was obtained in our
previous paper [12]. However, as opposed to the present derivation, in Ref. [12] we used
the Born approximation for the calculation of AE(), i.e., in Eq. (12) T); was replaced
by Vi2. The second term comes from the relativistic normalization factor \/w{p)w(q) in
the kernel (2) and corresponds to the relativistic modification of the pionium Coulomb
wif | [d*p/(2m)*c(p)|® = #3(1 — 0.381a)?/m,. Since this correction comes from
the Coulomb w.f. of the atom, it does not depend on the parameters of the strong 7
interaction, and for this reason it was neglected in Ref. [12].

Inclusion of 8G introduces a correction in the lifetime due to the exchange of an infinite
number of Coulomb photons. The integrals emerging in the calculation of this correction
are ultraviolet convergent, containing, however (in complete analogy with a well-known
result from nonrelativistic scattering theory), an infrared enhancement alna which stems
from the one-photon exchange piece in Eq. (5). Collecting all terms together and using
Egs. (12) for relating Im71, to AE®M | we finally arrive at the first-order correction to
the pionium rate,

AEQ)
1

9 AEM
r = r0(1+(—— ) + (=0.763a) + (1/2+ 2.694 — Ina)
8 —————

E,
relativistic w.f. N
strong Coulomb photon exchanges

+ b~ (MTO) 7 Reol(1 + TraGo(M))Va(1 + Go(M*) o) wchigar), (15)

- ]

where 6pr stands for the mass shift correction [14] and the last term collects the radiative
corrections [13, 14] (including the retardation correction [10], the correction due to vacuum
polarization [8], etc.). In Eq. (15) all the first-order strong and electromagnetic corrections
are given in closed form, thus avoiding any difficulties connected with the double-counting
problem. The kernel which appears in the last term, (14+712Go(M*))Va(1+Go(M*)T}2),
is constructed from the underlying Lagrangian with the use of the conventional Feynman
diagrammatic technique. A detailed reexamination of the above-mentioned corrections
within the BS approach will be addressed in our forthcoming publications.

In order to estimate the size of the calculated corrections to the pionium lifetime (Eq.
(15)) we have used the following value of the singlet scattering length: m.(2a3 + o) =
0.49, corresponding to a value AE(V)/E, = 0.24%. The first, second, and third terms
then contribute, respectively, —0.26%, —0.55%, and +1.85%, and the total contribution
amounts to ~1% of the decay width (apart from the mass shift and radiative corrections).
The largest contribution comes from the alna term in Eq. (15).
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