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A new link between soliton solutions of integrable nonlinear equations and one-
dimensional Ising models is established. Translational invariance of the spin lattice as-
sociated with the KdV equation is related to self-similar potentials of the Schrédinger
equation. This gives antiferromagnets with exponentially decaying interaction between
the spins. Partition function is calculated exactly for a homogeneous magnetic field and
two discrete values of the temperature.

PACS: 03.65.-w, 05.50.+q

The one-dimensional Schrédinger equation
Lp(z) = —he2(z) + ul2)P(z) = MY(2) (1

lies in the foundations of quantum mechanics and theory of solitons. The class of potentials
u(z), for which the spectrum and eigenfunctions of the operator L are known in the
closed form, is of a particular interest. It includes simple potentials tied to the Gauss
hypergeometric function (for a review, see [1]), finite-gap potentials, and the potentials
whose discrete spectra consist of a number of arithmetic or geometric progressions (see/ 2/

, 3] and references therein). The latter potentials appear after a self-similar reduction of
the factorization chain or the chain of Darboux transformations. In this note we discuss
relation of the self-similar potentials to one-dimensional Ising type spin chain models.
Below we use the language of the soliton theory described, e.g., in [4, 5].

It is well known that if the potential u(z, t) and the wave function ¥(z,t) in (1) depend

on ‘time’ ¢ in such a way that

ez, t) = By(z,t), B = —483 + 6u(x, )0, + 3ug(z,t), (2)

then the compatibility condition of (1) and (2}, L¢ = [B, L], is equivalent to the Korteweg -
de Vries (KdV) equation u; + .z —6uu,; = 0. The N-soliton solution of this equation can
be represented in the form u(z,t) = —202 In 7 (z, t), where 7n_ = det C is the determinant
of the matrix

2v/kik; 4 4.
Cij =6 + Wk—?e(a‘w’m, 6; = kiz — kit + 6" . ®)
t 7

Here k; are the amplitudes of solitons related to the bound state energies of (1), X\; =
—k?/4, and 020)/ k; are the zero time phases. The ordering 0 < ky < ... < k; is assumed.
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Equivalently, this 7-function can be rewritten in the form [4, 5]:

=Y exp( Y Agmpi+ Y, Oim), 4

$i=0,1 1<i<j<N 1<i<N

where the phase shifts A;; are determined by the formula

a; _ (ki —ky)?
e ®
There are generalizations of the expressions (3)-(5) such that the corresponding u(z,t,...)
satisfy higher order members of the KdV-hierarchy, sin-Gordon, Kadomtsev — Petviashvili
(KP), Toda, and some other integrable equations [4].

We start from the observation that the expression (4) has nice interpretation within
the statistical mechanics. Namely, for 8; = #(®) =const it defines the grand partition
function of the lattice gas model [6]. In this case y; play the role of filling factors of the
lattice sites by repulsing molecules, 8(%) is proportional to the chemical potential, and Aij
are proportional to the interaction energy between the i-th and j-th molecules.

Simultaneously, (4) is closely related to the partition function of the one-dimensional
Ising model [6]:

Zn = Z e BE E=2Jij0idj— Z Hay, (6)

oi=#1 i<j 1<i<N

where N is the number of spins o; = 1, J;; = Jj; is the coupling between i-th and j-th
spins, H; is the external magnetic field, 3 = 1/kT is the inverse temperature. Indeed, let
us introduce into (4) the spin variables via the substitution u; = (o; + 1)/2. After some
simple calculations one finds

TN=6¢ZN, ¢=%ZA1']‘+% Z 8;, (N
i<j 1<j<N
provided
A,;j = —4,3J,'j, 8; = 2,3(H, + Z Jij). (8)
1<j#ISN

As a result, one arrives at an interesting fact: from a given N-soliton 7-function of
the KdV equation (4), one recovers the partition function of the N-spin Ising model (7).
The 7-function is defined only up to a gauge factor exp(az + b), and (7) fits this freedom.
Therefore one may identify the N-soliton 7-function itself with (6) for the specific exchange
interaction (5). This fact alone does not help much in the evaluation of Zy. However, the
recursive way of building N-soliton potentials with the help of Darboux transformations
or the factorization method appears to be quite useful. Let us provide the representation
of Zy following from the Wronskian form of 7n [7, 8]

9N(N+1)/2 Wn 41w,
ZN = H.<~(k2 — k?)l/Z’ W = det ( dxi’lj) , 9)
i<j\"vi

where Uy;_1 = chBHN_3j42,Y2; = shBHpy_3j+1. Dependence of H; on the soliton
parameters is read from (8).

The factorization method transforms a given potential u;(x) = f7(z) — fjz(z) + A
with some discrete spectrum to the potential u;4.1(z) = u;(z) + 2f;z(x) containing an
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additional (the lowest) bound state with the prescribed energy A;. Within the Ising models
context, this corresponds to the extension of the lattice by one more site. Then the infinite-
soliton potentials correspond to the thermodynamic limit N — oo. Characterization of
general 7y at N — oo is a challenging problem, but for the specific choice of parameters
k,-,O,(O) this function can be analyzed to some extent through the basic infinite chain of
equations [1]

(Fi(@) + fir1 (@), + f(@) = fla@) = p; =X = Xj, JEZ. (10)

In general both 7 and Zn diverge in the limit N — co. If the corresponding solutions
of (10) are finite, then the divergences gather into the gauge factor.

A key observation of the present work is that the simplest physical constraints imposed
upon the form of spin interactions Ji; of the infinite Ising chain select the potentials with
the discrete spectrum composed from a number of geometric progressions. First, let us
demand that all the spins are situated on equal distance from each other and that they
are identical, i.e. that there is a translational invariance, Ai11 ;41 = A;i;. This means
that the intensities of interaction A;; depend only on the distance between the sites |i — j|,
Ai; = A([i — j|). Such a natural constraint has the unique solution

ki =kig?, qg=e"2°, Aij = 2In]tanh a(i - j), (11)

where a > 0 is an arbitrary constant. For finite IV this spectrum corresponds to reflec-
tionless potentials with the eigenvalues condensing near A = 0. For ¢ > 1, one should
write k; = kyg~i+! for correct ordering of k;. (The exponentially growing spectrum is
formally obtained for purely imaginary k; and ¢ > 1, but the corresponding potential
contains singularities.) In the N — oo limit, one gets an infinite soliton potential with
the discrete spectrum \; = —k3q?U~1) /4 describing a specific semi-infinite spin chain (j
takes only positive values). As ¢ — 0 for j — oo, the z and t depending part of the
magnetic field is decaying exponentially from the edge of the lattice. The limits z,t — oo
correspond to the growing depth of penetration of the magnetic field inside the bulk. Note
that one can analyze boundary effects by working with a difference of the free energy at
two fixed values of the magnetic field.

Since 0 < |tanha(i—j)| < 1, one has J;; > 0, i.e. an antiferromagnetic interaction (the
spins are not aligned in the ground state). It has nice physical characteristics — its intensity
falls exponentially fast with the distance between the sites. It is well known that the one-
dimensional systems with finite range interactions do not have phase transitions at non-
zero temperature. There is a model with the exponential interaction J;; = —v|Jole=717l
solved in the limit ¥ — 0 by M. Kac [9]. This limit corresponds to the very weak but
long-range interaction and shows a phase transition with the Van der Waals equation of
state.

There should be some relation of our madel to the Kac one, but it is not clear whether
there exists a direct connection. A similar molecular approximation limit is reached in our
case if @ — 0. Formally A;; o« J;;/kT diverge in this limit. If we renormalize interaction
constants Jif" = Jy; (g~ — ¢) and the temperature Tye, = T(g~! — q), then the maximal
interaction energy of a single i-th spin (determined by the summation of JIF™ over j) will
be finite for @ — 0 (or ¢ — 1). Therefore the limit ¢ — 1 corresponds to the long range
interaction model at low temperature. Note that one should rescale simultaneously the
magnetic field H = h/(g~! — g) to imitate the change of the temperature.

The particular form of the renormalization factor ¢g~* — ¢ was chosen in order in the
limit ¢ — O to recover the interaction J[™ oc d;41,;. If one takes h as a real magnetic
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field then one gets the nearest neighbor interaction Ising model at high temperature. If
the magnetic field is not rescaled then the ¢ — 0 limit corresponds to the completely
non-interacting spins.  Thus our formalism allows to analyze partition function upon two
dimensional planes in the space of variables (T, H,q). Unfortunately, for fixed ¢ the
temperature is fixed as well and we may normalize the “KdV temperature” to kT = 1.

The discrete spectrum does not characterize completely even the reflectionless poten-
tials — one has to fix the phases ;. Only for the special choice of these parameters one
arrives at the self-similar potentials. E.g., the simplest case is determined by the condi-
tion that the scaling of = and ¢t by g and ¢3 respectively is equivalent to removing of one
soliton. Formally this corresponds to the constraint 6;(gz,qt) = 6;11(z,t) assuming the
choice 0,(0) = 6©) =const. However, 7, Zy and & in (7) are diverging for N — oo and
a more careful analysis is thus called for. Note that the shift of H; in (8) remains finite
and it becomes a fixed constant for ¢ — co. This means that in the thermodynamic limit
the zero chemical potential in the lattice gas partition function corresponds to a fixed
nonzero magnetic field in the Ising model, and, vice versa, zero magnetic field matches
with a prescribed value of the chemical potential.

Let us consider now the “M-color” Ising model for which the chain is formed by the
embedded sublattices when the blocks of M spins with different distances between them
are periodically repeated. Within each of this block the distances between spins are not
equal, so that the interaction constants between the first M sites are given by arbitrary
(random) numbers. Equivalently, one may think that in the equal distance lattice points
one has different magnetic moment particles, i.e. some kind of ferrimagnetic interaction.
Such physical constraints are bound to the condition A; ar,j+ar = Aij, which leads to the
constraint upon the soliton energies of the form kj;ar = gk;, generalizing the previous
case. For a specific choice of the phases Bfg_)M = 9§°) one arrives at the general self-similar

potentials for which one has 6;(gz,q%t) = 6;1a(z,t). The rigorous definition of these
potentials for fixed time is given by the constraints [7]‘/

firm(z) = afi(gz),  pj+m = Epj (12)

imposed upon the chain (10). The system of mixed differential and ¢-difference equations
arising after this reduction describes g-deformation of the Painlevé transcendents and
their higher order analogs. For M = 1 one has a g-harmonic oscillator model, for M = 2
a system with the suy(1,1) symmetry algebra, etc.

Using the Wronskian representation (9), we calculated exactly the free energy per site
f1 in the thermodynamic limit Zy — e 3Nf1 N — oo, for a homogeneous magnetic field
and arbitrary M. For M = 1 one has

2(¢*; ¢*)oo ch BH
" (g% q2)’

where (a;¢)oo = [1;24(1 — a¢’) and

—Bfi(H) =1 + g0 [ dvin (o - gran®om), (13

2,2iv, 4)2 (n2o—2iv. o4)2 20y, 2
g‘e”q ge " q Oi(v,q
lo@)I* = = (2 2 2'u.°°£ 2 (ot —2'./).004 2 ;( ’ 2),' (14)
4sin V(qe‘ ' q )oo(qe * v q )oo el(V’q)
The Jacobi §-functions are defined in the standard way [10]. The density function p(v) has
integrable singularities near the v = 0, 7 points. Note that it satisfies a curious identity
such that the second term in (13) vanishes for H = 0.
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Dependence of the magnetization m(H) = —0g fi(H) on H looks as follows

_ 6% (v, ¢*)dv n
m(H) = ( B _/ 92(v, q2) ch® BH — 62 (v, q’~’)sh2ﬂH)ta hBH. (15)

We substitute into this expression SH = h/(¢g”! — ¢) and plot m(h) in Figure by the
dashed lines for ¢ = 0.1 (the lower curve) and ¢ = 0.8. We would like to note that it is
not clear how to solve the considered Ising model with the help of the traditional Bethe
ansatz and transfer matrix methods [6].
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Dependence of the magnetization m(h) on h for the

KdV case n = 1 {dashed lines) and for the BKP case

n = 2 (solid lines). The lower curves correspond to
h q = 0.1 and the upper ones to ¢ = 0.8
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As was mentioned, a drawback of the given construction is that the KdV-generated
partition function has a fixed temperature for fixed a. In order to obtain the full ther-
modynamical description it is necessary to extend the formalism and replace A;; (11) at
least by nA;;, where n is a positive integer. The KdV temperature is thus normalized to
B =n =1 (for n > 1 one has to renormalize the magnetic field H; — nH; in order to
imitate the effect of the temperature lowering). This means that we need to look for an
integrable model with the phase shifts given by the powers of (5). Then one may hope
to recover the partition function with arbitrary values of the temperature & 1/n by an
analytic continuation.

The phase shifts A;; for a given Hirota polynomial P(z,,zs,...), determining a par-
ticular evolution equation, can be represented in the form [5]

Aij — _ P(kl — ks, kg — k%: ) (—l)l(ka-l - kgl-H))
Plky + ko, —k3 — k3,..., (—1)¢ (k3 + k2HHY)’

(16)

where £ is the number of variables in P. We have looked for equations admitting N-soliton
solutions with the prescribed phase shifts, substituting homogeneous (with the account of
weights of the variables) polynomials with undefined coefficients into (16). It turns out
that the taken conditions are very restrictive. The only solution we were able to find is the
hierarchy which starts from P(x, 3, z5) = 162¢ + 202323 + 92125 — 522 corresponding
to n = 2. After an appropriate rescaling of variables this polynomial coincides with the
one for B-type KP (BKP) equation [11].

Using the Pfaffian representation of the N-soliton solutions of the BKP equation [11],
we calculated exactly the partition function in the thermodynamical limit N — oo for a
homogeneous magnetic field and arbitrary M. For M = 1 one has

q7 Q)oo aVol (V’ q1/2)
4 ot A S
ch ﬂH * 02(”) q1/2) ’

818 = - [ dvin2 | Bl

(17
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where 8, means the derivative with respect to the variable v and 6;(v, ¢'/2) is another
Jacobi 6-function [10]. The dependence of magnetization on H is

w . -1
m(H)=(1—% [ (14 GLBL LI )tanh4ﬂH- (18)

(—q; q)goaual (Va q1/2)

For ¢ — 0 one gets the simple answer m(H) = tanh23H.

We substitute into (18) BH = h/(¢”! — q) and plot m(h) in the Figure by the solid
lines for ¢ = 0.1 (the lower curve) and ¢ = 0.8. From the comparison of the magnetization
curves one can see that with the lowering of temperature, which corresponds both to the
transition from n = 1 to n = 2 and to the growing of ¢, m(h) becomes more steep. This
may be interpreted as a trend towards formation of a staircase-like fractal function that
should take place at zero temperature according to the arguments of [12]. Formation of
the platos for m(h) at low temperatures can be easily checked analytically for the nearest
neighbor interaction Ising antiferromagnet.

The attempts to find integrable systems with n > 2 have failed for Hirota polynomials
of up to 20-th degree. Probably one has to pass from the sealar Lax pairs to the matrix
ones in order to imitate other values of the discrete temperature. The lattice of tem-
peratures itself resembles a discrete variable unifying different hierarchies of integrable
systems into one class. '

A relation between the two-dimensional nearest neighbor interaction Ising model and
the sinh-Gordon hierarchy was discussed in [13]. In particular, the corresponding N-
soliton solution 7-function, NV — oo, was shown to be the generating function of correlation
functions. It should be noted that our identification of the one-dimensional Ising model
partition function with 7-functions of some integrable equations is different from the
constructions considered in [13] and earlier related works. However, it is expected that
the self-similar potentials (or g-analogs of the Painlevé transcendents) are related to some
correlation functions in the corresponding setting as well. A hint on this comes from
the fact that the supersymmetric quantum mechanical representation of the factorization
method is related to the Lax pair of the sinh-Gordon equation.

The authors are indebted to Yu.Berest, V.Inozemtsev, T.Shiota, C.Tracy for stimu-
lating discussions. This work is supported in part by NSERC (Canada), RFBR (Russia)
grant 97-01-01041 and by INTAS 96-700.
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