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An explicit solution is obtained for the four-wave mixing wq = wi — w2 + w3 of two
strong fields E;, E3 and two weak fields Ez, E4 in a four-level system with large Doppler
broadening. Resonance of the intensity dependence of the mixing coefficient is found
around equal Rabi frequencies, E; - di = Ej3 - d3, where d; 3 are the dipole moments
of the corresponding transitions. The effect is interpreted as a crossing of quasi-energy
levels. Up to 6 peaks appear in the dependence of the conversion coefficient on the
detuning of the probe field E2. The unexpected additional pair of peaks is a consequence
of averaging over velocities. The results permit interpretation of the saturation behavior
found in recent experiments on mixing in sodium vapor.

PACS: 42.50.Hz, 42.62F1i, 42.65.Ky

Four-level systems are promising objects for resonant optics and spectroscopy owing to
the great variety of nonlinear effects. These include nonlinear interference, inversionless
gain, resonance refraction, electromagnetically induced transparency, optically induced
energy-level mixing and shifting, population redistribution, etc. (see [1, 2] and citations
therein). Recent experiments on continuous resonant four-wave frequency mixing of the
Raman type with sodium molecules in a heat pipe {3, 4] gave interesting behavior of the
generated wave power as a function of the frequencies and intensities of the incident waves.
In particular, the dependence of the output power on the intensity of the first strong field
was found to saturate in an experiment on down-conversion [3], while the dependence on
the intensity of the third wave exhibited linear growth. The measurements were taken
at large Doppler broadening, whereas the nonperturbative analytical theory was intended
[5, 6] for atoms at rest.

From the mathematical standpoint the development of a nonperturbative theory in-
volves the solution of a set of 16 algebraic equations for the steady-state elements of the
atomic density matrix for the four-level system. The problem is only to analyze the re-
sulting awkward expression and to average this expression over a Maxwellian velocity
distribution. In the present paper we study the particular case of two strong and two
weak fields interacting with a four-level system having some symmetry. The fourth de-
gree equation can be reduced to a biquadratic one, and then the integration can be done
analytically. Fig.1 (b).

Let us consider the conversion of two strong incident waves E; 3 resonantly interact-
ing with opposite transitions gl,mn and the weak field Ey near the resonance with the
transition gn into the fourth output weak wave E, (inset of Fig. 1). The electric field in
the cell is

4
E(r,t) =) E,exp (iw,t — ik, 1), (1)

v=1
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1
Fig. 1. Conversion coefficient |{84)|? (arbi-
trary units) as a function of the detuning
of the second field at |G1| = 1, {Gs] = 0.5,
kivr = 7.0, kavr = 6.9, v = 0.2 (a), v = 0.02
(b), and v = 0.02 at |G1| = [G3{ = 0.5 (¢) (ali
values are in ns~!). The inset shows the level
diagram of a four-level system interacting with
two strong driving fields at opposite transitions
(solid arrows) and with two weak fields (wavy
arrows). The dotted lines show the forbidden
transitions.

Frequency detuning

where E, is the amplitude of the v-th field, and w,,k, are the frequency and wave
vector. The index v numbers the transitions, v = 1,2,3,4. Detunings ; = w; — wy,
2 = Wa—Wgn, I3 = W3—Wmn, Iy = Wy —wpyy are assumed to be small, w;; = (E; — E;) /h
are the transition frequencies between energy levels E; and E;. The indices i,j = m,n, g,1
denote the energy levels. The frequency and wave vector of fourth wave satisfy the phase-
matching condition wgy = w1 — wa + ws, kg = k1 — kg + ks.

The Maxwell equation for the output wave can be reduced to

dE4 _ 27l’iwm1dm1
= o) @

where z is the coordinate along k4, d,; is the matrix element of the dipole moment
operator d, ¢ is the speed of light, pn is the coherence at the transition ml, and the
angle brackets denote averaging over the velocity distribution. We should calculate p,
as a function of the input amplitudes E; » 3, their wave vectors k; 2 3, and the frequency
detunings Q4 2 3.

With this goal we solve the equation for Wigner’s atomic density matrix

8 SN
(52 +v-V+ ’Yz‘j) pij = ¢;6i; — iV, Plij, 3

where v is the atomic velocity, v;; are relaxation constants, ¢; = Q; exp(~v? [vZ) [v3.x3/2
is the Maxwellian excitation function, and V = ~E(r,t)-d/2# is the interaction operator.

To the zeroth approximation we can neglect both the weak fields E; 4 — 0. The prob-
lem boils down to finding the populations p; = p;; and coherences p; = pg exp(—i€t +
iky - T), p3 = Pmnexp(—ifdst + tks - r) of a pair of separated two-level systems. The
solution for a two-level system under strong field is well-known (see [7]).

Weak fields with amplitudes G3 = E; - dgn /2R, G4 = E4 - dmmi/2h give rise to cross-
coherence between levels belonging to the opposite two-level systems at the allowed tran-
sitions, pp = pgn exp(~ifdat + ikz - 1), ps = ppuexp(—ifdst + iky - 1), and at the for-
bidden transitions, ps = pgm exp(—iQlst + iks - T), pg = pni exp(—ifdst + ikg - r), where
Qs = 0y - Oy, Qs = 0 — Qg, ks =k; —ky, ke = k; — ko. To first order one can neglect
the influence of these fields on the populations p; and cohereces p; 3. A set of 4 algebraic
equations for the off-diagonal matrix elements appears:

Tap2 —iG1pg +iGaps = ~iGa(pg — pn),
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Tip; +iG3ps —iGips = 1Gi(pm — p1), (4)
Tsps —iG1p; +iG3p2 = iGap3 —iGyp1,
ePs +1G3p; —iG1py = —iGap] +1iGyps.
Here G1 = E; - dg/2h, Gs = E3 - dinn/2h are the Rabi frequencies, I', = v, + i,
Y1 = Yg1,Y3 = Ymn> Y2 = Ygns Y4 = Ynu are the constants for relaxation of the coherence
at the allowed transition, 5 = Ygm,Ye = Ynt are the constants for forbidden transitions,
Q, =Q, -k, - v is the Doppler-shifted detuning.
The solution of Eq. (4) for the off-diagonal element at transition ml can be written as

i = —iBsG1GaGy — 104Gl (5)

In the thin-medium approximation the generated field is small, |G4| < |G2l, so that one
may neglect the absorption a4 and find the coefficient 34. We found the intensity of the
output wave by integrating Eq. (2) from z = 0 to the cell length L:

2m2w L
2R3
where e,, is the polarization of the v-th wave, and I, = c|E,|?/8~ is its intensity. We find

the coefficient 8, by comparing Eq. (4) to solution of the form (5):

_IG1> —|Gs|* — T2l ,
iGY P

Iy(L) = | (Ba) (dgr - €1)(dgr - €2)(dmn - €3)(drms - €4) 2111213, (6)

1= 3 (5 + )0, = o)

_|GsPP = |Gh|* ~ToTg

Here elements p,, pn, p1, p3 are solutions for separated two-level systems. The determinant
D of set (4) is a polynomial of fourth degree in the velocity. The averaging of the
coefficient (4 over velocity can be done by using the residue theorem in the Doppler limit
kyor > |G|, ‘Qvly'Y- .’
To examine the intensity dependence of the coefficient 5, let us consider the case of
equal relaxation constants (vi; = 7), excitation of the lower level only, detunings of the
strong field such that ;/k; = Q3/ks < vr, and equal wave numbers of the two weak
fields. The condition k; = k4 (and therefore ks = k¢) seems realistic for the down-
conversion experiment of Ref. [3], where the difference of the wave numbers of the weak
fields was about 10%. One can ignore the difference k2 — k4 provided that |ky — k4] <
(kokskske)'/4. In view of the phase-matching condition it is reasonable that the weak
field detunings depend on a single parameter 2: Q = ka2Qy /ky + Q, Q4 = kg [k — 2.
If all the wave vectors are parallel, then the expression for (8,) assumes a simple form:

o0
_ N e [ Cl)_ dy
(:64> - \/-7?’UTe R D(y) Fgl + k%yz’ (8)

Cly) = 4G1[%iz + (v ~ ik1y) [|IG1* ~ |Gs|* ~ (v —i(kay — Q) (y — i(ksy — )] -

Herey = ko -v/ky—Q [k1, 2z = Q—iy, % = 4*+4|G,|? is the saturated width, N = Q; /vy
is the unperturbed population. The determinant D(y) turns out to be a function of g?

D(y) = &*y* — 2x°y2 A5 + A3, 9)
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A} = [ - (161] - 1Gs])?] [#* - (16ul + IGa?]

k [k k2 \17'2
Br=(E2=D2 =GP +1Gs, w=—=|2(1-2 > 2.
K kl kl
The limiting case u — oo corresponds to a quasi-degenerate four-level system ks ¢ — 0.
The opposite limit 4 = 2 means k3 — 0. The detuning dependence of |A2| takes its
minimum values at

Q = +|G1| £1Gs). (10)

This is a consequence of the level splitting by the strong driving field. Note that at
|G1| = |G3| the two minima merge together. The reason is the equal Rabi splitting for
each level.

Detuning

Fig. 2. Two positive solutions Q(1:2)(y) of
the equation D(y,Q2) = 0 as a function of
y/vr. The other two zeros are symmetric:
QB = o) 9@ = Q2. The Maxwellian
distribution is shown by the dotted line

Velocity

The simple form of the determinant (9) allows calculating the mixing coefficient (8)
explicitly,
\/7? N e_Qg / k?v%

B = or T2, + TRy + Bop?
y+izp® | 4GP+ /2-A) (1 p
x [ R + Az R + Fal ’ (11)

where R = /2(A; — A1), RR > 0. The branch of the double-valued function A, should
be chosen according to the following rules:

RA; <0at Py <|Q], RA;>0at |0 <P, sign(YA;) =sign Qat P_ < |Q| < Py,

where Py = ||G1| £ |Gsl! .

The mixing coefficient | (84} |? calculated from Eq. (11) is plotted in Fig. la as a
function of the detuning Q. The coefficient has 4 peaks at points given by (10) as for
motionless particles. At equal distances between quasi-energy levels |G,| = |G3| the two
central peaks coalesce at the center 2 = 0 (Fig.1c). Besides the zeros of Aj, zeros of
R(Q) may add two peaks near the center (Fig. 1) arising from averaging over velocities.
To interpret two additional peaks let us plot the two positive zeros Q12 (y) of D as a
function of velocity y (Fig.2). The two negative zeros are located symmetrically about
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Fig. 3. Conversion coefficient | {84)|% (arbi-
trary units) versus G1|? at |G3| = 0.5, @ =0,
kivr = 7, kaup = 6.5: v = 0.06 (a), v = 0.6
. (b); intensity I (arb. units) versus [G1]? at

- v = 0.6 (c). The parameters for (b) and
3. (c) correspond to experiment; all values are
1 in ns~!. The boxes denote the experimental
points from Ref. [3]. The inset illustrates the
oo‘F e 1 Rabi splitting of dressed states.

1st wave intensity

the y axis. The return points,) where the derivative (1,2 (y) equals zero, are places of
minimum variation of the eigenfrequencies. They therefore give the main contribution to
the integral over velocity. The integration over each neighborhood adds one sharp peak in
the spectrum, as shown schematically at the right. The two upper return points denoted
by big gray circles are located at zero velocity. Two additional return points, shown by
tight black circles, appear at finite velocity and correspond to the additional peak. The
return points can be found analytically from the conditions
dz 0D 0Ddz

=0, D(y,z):O,

ag = = 0. (12)

By T osdy
At v = 0 this gives four solutions (10) at y = 0, namely, 2 = |G| £ |G3|. At real
y = £v/A]/k there are two additional solutions

|G1]? _ 1Gsf

z=%2 2 24

(13)

The coefficient A; becomes positive at |G1/G3| > p?/(u? — 4) = k?/k2; otherwise the
return point vanishes, and with it the additional peak.

The value | (84) |? at exact resonance (2, = 0, v = 1,...,4) is shown in Fig. 3 as a
function of |G |?. The sharp peak at |G| = |G3| confirms the qualitative interpretation
of the effect as a crossing of quasi-energy levels. The inset in Fig. 3 illustrates the case
where the cross-transition from the upper sublevel of level g to the upper sublevel of level
n has the same frequency as the transition between their lower sublevels. Concurrently,
the same resonance is achieved for transition m —![. In this case only 3 peaks remain in the
spectrum (Fig. 1c), with a predominant maximum in the center. The crossing condition
|G1| = |G3| brings about the maximum conversion efficiency in the intensity dependence.

The splitting effect is evident from experimental results [3, 4] on resonant four-wave
mixing in Nap. The main feature is saturation of the output power as a function of one of
the strong fields. The experimental conditions of Ref. [3] generally satisfy the above model:
(1) a down-conversion level scheme w; < w; (see inset, Fig. 1) with kjvpr = 7.0 ns™1,
kovr = 6.5 ns~ !, kaur = 5.2 ns™}, kqur = 5.7 ns~!; (2) the interaction region is short
enough (about 1 cm) that the model of thin media can be employed; (3) the estimated level

D or “return frequencies,” as they are called in the theory of three-level system with large Doppler
width [8]
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parameters are N; ~ 1012 cm™® > N, ~ 10" cm™ > Ny, Npj Ym = 74 ~ 0.2 ns7?,

n = Y ~ 0.02 ns~1. A slightly noncollinear geometry (mixing angle 8§ ~ 10~2) leads to
an effective broadening Aw ~ kvr-8 ~ 0.1 ns~!. Another factor is the usual jitter of laser
frequencies, especially for dimer and dye lasers, Aw ~ 0.2+ 0.4 ns™!. Thus, the effective
value v = 0.3 = 0.6 ns™! seems reasonable; (4) the maximum field values estimated from
the focusing geometry. |G1|™®* ~ 1 ns™!, |Go|™®* ~ 0.2 ns~!, |G3|™®* ~ 0.5 ns~!, nearly
correspond to the condition of two strong fields.

The resonance condition |G| = |G'3| may result in peaks in both B4(I1) and B4{l3). If
|G1|™3* > |G3]™2*, the peak is seen only in 84(f1). The width of the peak is determined
by the decay rate 5. Since in the experiment vy ~ |G3|™2*, the peak is wide (Fig. 3b)
and gives a smooth saturation curve I,(I;) (Fig. 3c) in agreement with the experimental
data (boxes in Fig. 3). The same time there is no saturation for I4(I3) both in theory and
experiment. Under the opposite experimental condition, |G1|™** < |G3|™* (Ref. [4]), the
behavior of I4(I;) and I4(I3) changes.

Thus the model explains qualitatively the main features of the measured saturation
curves. To observe the charp resonances arising from Rabi splitting, stabilization of
laser frequencies seems to be important. To increase the efficiency of conversion into the
fourth wave it is necessary to tune the laser frequencies to the corresponding peaks. The
optimum at 2, = 0 corresponds to equal Rabi frequencies |G1| = |G3].
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