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Tunneling through a system with two discrete electron levels coupled by electron-phonon interaction is
considered. The interplay between elastic and inelastic tunneling channels is analyzed not only for weak
electron-phonon coupling but also for strong coupling in resonant case. It is shown that intensity and width
of peaks in tunneling conductivity is strongly influenced by non equilibrium effects.

PACS: 73.40.Gk, 73.63.—b

Recently great attention was paid to both experimen-
tal and theoretical investigations of kinetic processes in
nanostructures, in connection with possible fabrication
of electronic devices of ultra small size. Electron-phonon
interaction is one of the important effects which influence
transport properties of various nanostructures, includ-
ing structures with quantum dot or a single molecule
placed in tunneling contact between the leads. From
the other hand, scanning tunneling microscopy (STM)
investigation of single molecules on a surface is a pow-
erful method of diagnostics of electron structure changes
of adsorbed molecules [1]. One of the important charac-
teristics of these changes is modification of vibrational
modes of adsorbed molecule. Thus inelastic tunneling
measurements can give information about the type of
molecule bounding to the surface. Electron-phonon in-
teraction is also very important in STM experiments,
concerning problem of single atomic (molecule) switch,
in which atoms or molecules are transferred from one
state to another one by a tunneling current [2]. The de-
velopment of theoretical description should clarify the
role of electron-phonon interaction in kinetic processes
in nanostructures and help the further progress in this
field.

In a number of papers electron-phonon interaction in
tunneling structures is described within the most sim-
ple model for intermediate system with a single electron
level coupled with a phonon mode ([3—5]). If interaction
with the leads is omitted, then this model has an exact
solution [6]. But this model can not be derived consis-
tently from many-body theory of condensed matter (see
e.g. [7]) and thus seems to be unrealistic.
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We discuss a different model, which can be argued
to be more physically justified for various systems, with
electron transitions between two levels, accompanied by
emission or absorption of a phonon (vibrational quan-
tum). This model allows to describe the interplay be-
tween two tunneling channels coupled by the electron-
phonon interaction. The influence of such interplay on
the tunneling spectra of semiconductor structures with
2D electron layers has been revealed in recent experi-
ments [8]. It was found that tunneling spectra essentially
change their shape when intersubband electron transi-
tion energy was close to the LO-phonon frequency.

In the present paper we consider the simplest system
of this kind, which is described by the Hamiltonian of
the following type:

-E[ = ﬁdot + ﬁtun + I?IO- (1)

The part I;Tdot corresponds to the intermediate subsys-
tem in which we take into account two localized states
and induced by electron-phonon interaction transitions
between these two states:

Hyoe= Y eiafa; + g(afa + af ar) (b +b") + web™b,
i—1,2
(2)

where €; corresponds to discrete levels in quantum dot
(or two electron states in molecule), wo — optical phonon
frequency (or molecule vibrational mode) and g — is
electron-phonon coupling constant. Tunneling transi-
tions from the intermediate system are included in

Hypn= Z Tp,i(cfai+h.c) + Z Tx,i(cfai+h.c.).

k,i=1,2
3)

p,i=1,2
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And free electron spectrum in left and right electrodes
(k and p) includes the applied bias V:

H, —Z(sk— cka+Z —

Operators ck, ¢p correspond to electrons in the leads and
a; - to electrons at the localized states of intermediate
system with energy ¢;.

By means of Keldysh diagram technique the tunnel-
ing current through such structure is determined as:

D / dTi(C5 - GF,). (5)

k,i=1,2

pu—ev)eh oCp-  (4)

(V) =

The expression for the tunneling current can be rewrit-
ten in the form, containing only Green functions of the
intermediate subsystem [9, 10] :

)=2 Z Vi /2ImGR

i=1,2

nd(w) — IG5 ())dw,

(6)

where v¥ = Ty Tiei (w), i (w) is the density of states
in the left electrode and nf(w) - is equilibrium filling
number in the left electrode.

The main problem is to calculate the Green func-
tions for the intermediate system in the presence of both
the tunneling coupling and electron-phonon interaction.
The equations for ij’-A are now coupled with the equa-
tions for G< due to electron-phonon interaction. The

equations for GR]A as usual describes the modifications
of electron spectral functions (density of states), but in
this case they depend on electron filling numbers, deter-
mined by the kinetic processes. For arbitrary ratio of
the electron-phonon coupling constant g to the tunnel-
ing rates 7y this is a strongly correlated system which
can not be solved exactly. The situation reminds widely
discussed Hubbard-Anderson model very much.

The theory can be developed in two limiting cases
g < v and g > «. In the present work we shall not
discuss nonequilibrium phonon effects and suppose that
phonon subsystem remains unperturbed by the tunnel-
ing processes.

In the limit of weak electron-phonon interaction,
g < 7, we can calculate Im Gf(w) and Gj;(w) as per-
turbation series in g. The first term looks like:

= G (w) 25 (W)GT () —
- GF(w)E5 W)G{' (W) + GF ()i (W)Gi' (W),  (7)

R ()G (). (8)

All the Green functions here are calculated for the tun-
neling problem without electron phonon interaction:

1
w—g;i +i(y? +1k)’ (9)
GF(w)) = —2in;(w)Im GE(w),

GF(w) =

where non equilibrium filling number n;(w) =

=(vny(w) + vEnR(w))/("} + 1F), and E(w) is the
simplest self energy part due to the electron-phonon
interaction:

SR () = ig? / [DR(W')G5 (w — ') +

+ D (") GE(w — w')]d, (10)

%5 (@) = —ig? / D(W)GE (W —w)de. (1)

The first order contribution to the tunneling current can
be divided into two different parts: I = I; + I,. The
first one corresponds to small changes in electron den-
sity of states due to electron-phonon interaction and is
described simply by some corrections to G:

k
1N (1)R
I = / [721 GVR )+
(’)’p+71) 1

R

(1R n(] w _no w n
(" + % ke o (@ )]( h(w) —np(w)) dw. (12)

The second contribution is more interesting, because
it describes inelastic tunneling processes with emission
or absorption of a phonon:

YEvd — 5P
(0 + 82 (v +15)?

I, = 4mg®

x / duTm GR (w)(nd () — nd(w)) %

(Im Gzz (w+ wo)("/l Yan (‘U + wo)—
—vEInd (W + wo) + (VS — VEVD)N (wo))—
—Im G (w — wo) (Y ¥En(w — wo)—

—v g (w — wo) + (1Y — 1IN (—wo))]-  (13)

The sign of this additional correction to the total cur-
rent depends on the ratio between four tunneling rates
¥, 7%, v5~8. The physical reason why electron-phonon
interaction can either increase or decrease the tunneling
current is connected with interference effects between
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direct and indirect tunneling channels. It becomes more
obvious if we notice that:

YEv) — v5Af (
(" +98) (8 + %)

So the inelastic processes increase the total current if the
inverse population of our two-level system appears due
to elastic tunneling. Two examples, which demonstrate
the enhancement or suppression effects in the tunneling
conductivity are shown in Fig.1.

g (W) = np(w)) = n1(w) — na(w).

(2)

dlr/dv

ardv

Pldv?

€ € vV

Fig.1. Tunneling conductivity spectra for weak electron
phonon coupling. Elastic, inelastic contributions and total
tunneling conductivity are shown in Fig.(a), (b) by dashed,
dotted and solid curves respectively. Values of the parame-
ters are: €1 — 2 = 1,wo = 0.6,9 = 0.4. A) v¥y2 > k4P,
B) %42 <« v%~? Phonon induced structure is more pro-
nounced in d’>I/dV? as it is shown in Fig.(c) by dashed
line for the case “a” and dotted line — for the case “b”,
solid line corresponds to elastic part of the current

In the limit of small tunneling coupling to the leads
so, that all v < g, we use a perturbation treatment
of tunneling processes in small parameter /9. For
the most interesting case, when phonon frequency is
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close to the resonance with electron transition energy
€1 — €2 ~ wp we can retain in the Hamiltonian only
the following interactions (similar to the rotating wave
approximation for two-level systems) :

erl—phon = g(aii_aab + a;alb"“)
as the most important.

Direct calculation of dot (molecule) Green functions
GE ,GE based on Heisenberg equations for isolated dot
(molecule) leads to a system of equations:

(w - El)ngl - gGZRbl = 1a
(w—e2— wO)ngl - 9G§n1 =0,
(w— 61)G§n1 —g(N + 1)G§bl =1—ms + N.

Where new functions G%,, G%,, are introduced:
G = i0(t — t'){[a2(£)b(t), af (')]),

Gy = i0(t —t')([a1 (1) (b(£)b" (t) — a3 ()a2(2)), o (¢')))-
N and ms are the number of phonons and electrons at
the second level respectively. At the third step the mean
value of phonon filling number is decoupled from the
average < azb(1 + b*d),a] >—< azb,af > (N +1).
After this approximation was done the retarded Green
function is determined:

1
(w—e1)
9%(N +1—ny)
x [1 T @) w=ca—wn) - 1 1))] - 19

The same procedure for the second level gives:

R _ 1
GOZ - (w _ 52) X
N [1 n 9> (N +n1) ]
((w —e2)(w —e1 +wp) — g*(N +1))

We see, that new poles in the Green functions appeared,
which corresponds to splitting of resonantly close two
pairs of levels: €1 and €3 + wp as well as €5 and €1 — wyq.
We can expect the appearance of three resonant peaks in
the local density of states near €; and 2. Note that the
energies of two split states depend on the temperature
through the phonon filling number N.

Now we treat as the first order perturbation the self
energy parts of two kinds, appeared due to the tunneling
coupling with the leads (see Fig.2.)

Tunneling current is determined by the self energies
as

R _
Goi =

I=2) ~4f / [GR(w)(—i25 (w))GA(w)+
i=1,2
+np (w)GF (W) ImZf (W) G (w) |dw
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Fig.2. Two first order diagrams for the self energy part
¥11. Dashed line denotes electron Green function in the
leads, wavy line — phonon Green function

The contribution of the first diagram is rather simple
b= [ RGR@GH @) + 1R @IGHw)] %

x (nj(w) — nd(w)) dw.

The contribution described by the second diagram
reduces in the first non vanishing order in (y/g)? to the
following form

L=g / | GR (W) 2GR — wo)[? (n8(w) — n8(w)) X

x (Y173 (np(w — wo) — N(wo) — 1)+
+9591 (nR (w — wo) — N(wo) —1)).

It is important that functions GF are determined
with the help of Eq. (14):

[GRI =[GE] " +i(vf + D).

This expression allows us to estimate the effective width
of each of the three resonant peaks near the initial
electron levels. It is remarkable that broadening of
these peaks is different and depends on nonequilibrium
electron numbers, thus it can be tuned by changing
the parameters of the tunneling contact. The peak,
corresponding to &; has the effective width: I“l) =
= (vF + 9f)na/(N + 1). And two split peaks near it
have the width T = (yF +1F)(NV + 1 — na)/2(N + 1).
The same values for the second set of peaks near €2 are:
IY = (v + 7)1 —n)/(N +1),T5 = (vf + BV +
+n1)/2(N +1).

Some tunneling conductivity curves for zero temper-
ature (N = 0) are shown in Fig.3. In this figure we
consider the case when both levels ¢; and &5 lie above
the Fermi level at zero applied bias voltage.

Let us point out the most interesting features of the
tunneling conductivity behavior in this case. For the
elastic channel in the tunneling conductivity spectra non-
equilibrium narrowing of two split peaks near &2 is al-
ways clearly seen, while the peak at initial energy e is
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Fig.3. Tunneling conductivity spectra for strong resonant
electron phonon coupling. Elastic and inelastic contribu-
tions to the tunneling conductivity are shown by dashed
and solid curves respectively. Chosen values of the pa-
rameters are: €1 — €2 = l,wo = 0.9, = 0.4. (a) 7§ =
=0.3,75 = 0.06; (b) 75 = 0.06,75 = 0.3; (c) v5 =5 =
= 0.1 . In figure (c) elastic tunneling current through each
electron level is shown separately by dotted and dashed
curves

broadened in a usual way by the tunneling rates. In bias
range close to €1 we can distinguish two different cases,
dependent on the ratio between the tunneling rates, be-
cause it determines the filling number of more deep state
€a. For v¥ < ~% two split peaks near &; are narrow and
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tunneling conductivity peak at bias voltage equal to ini-
tial level €; has usual tunneling width (Fig.3.).

For 7% >> 4% vice versa the split peaks are broadened
up to the usual tunneling width and peak at bias volt-
age equal to initial level £; becomes narrow. For strong
enough electron-phonon coupling contribution of inelas-
tic channel to the tunneling conductivity can strongly
exceed the elastic channel contribution at certain bias
close to £1. The tunneling conductivity peaks of inelas-
tic channel are narrow due to non equilibrium effects.

At high temperature, when N > 1, the shape of
the tunneling conductivity curves are not so sensitive to
the ratio between different tunneling rates. One should
observe very narrow peaks at €; and €2, while the broad-
ening of split peaks would be always equal to one half
of the usual tunneling width.

Conclusions. In the weak electron phonon coupling
limit we revealed that interference effects between vari-
ous channels can lead either to some increase of the total
current or to its suppression. The sign of the resulting
effect depends on the ratios between the tunneling rates.

For too large tunneling rates observation of inelas-
tic peaks in the tunneling conductivity spectra is hardly
possible.

For strong electron-phonon coupling three peaks can
arise in the tunneling conductivity spectra near each
electron level in resonant situation. Non equilibrium
narrowing of these peaks at certain ratio between the
tunneling rates is found out. The positions of satellite
peaks in this case are determined not only by the phonon
frequency wq, but also by the electron phonon coupling
constant and the temperature.
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The important feature of the system under consid-
eration is that we can change the relative intensity and
width of elastic and inelastic peaks by tuning the tun-
neling coupling of intermediate system with the leads.
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