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Monopole creation operator in presence of matter
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The monopole creation operator proposed recently by Frohlich and Marchetti is investigated in the Abelian
Higgs model with the compact gauge field. We show numerically that the creation operator detects the con-
densation of monopoles in the presence of the dynamical matter field.
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The value of the deconfinement temperature is one
of the most important predictions of the lattice QCD.
To study the temperature phase transition we have to
investigate the order parameter. For full QCD when dy-
namical quarks are taken into account, the string tension
and the expectation value of the Polyakov line are not the
order parameters. On the other hand in the dual super-
conductor model of QCD vacuum [1] we have the natural
order parameter for confinement—deconfinement phase
transition. This is the value of the monopole conden-
sate. It should be nonzero in the confinement phase (the
monopoles are condensed as Cooper pairs in ordinary
superconductor) and zero in the deconfinement phase.
To extract monopole from vacuum of non-Abelian fields
we have to perform the Abelian projection [2], and after
that we can evaluate the value of the monopole conden-
sate using the monopole creation operator.

Originally the gauge invariant monopole creation
operator was proposed by Frohlich and Marchetti for
compact U(1) gauge theory [3]. The construction is ana-
logous to the Dirac creation operator [4] for a charged
particle. The monopole operator was numerically stud-
ied in compact Abelian gauge model [5] and in the pure
SU(2) gauge theory in the usual [6] and the spatial [7]
Maximal Abelian gauges. It was found that the expecta-
tion value of this operator behaves as an order parame-
ter for confinement—deconfinement phase transition: the
expectation value is non-zero in the confinement phase
and zero in the deconfinement phase. The similar con-
clusions were made for another types of the monopole
creation operators [8]. These results confirm the dual
superconductor hypothesis [1] for gluodynamics vacuum.

However, the monopole operator discussed in Ref. [3]
exhibits some inconsistency in the presence of charged
matter fields, namely the Dirac string becomes visi-
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ble. To get rid of the Dirac string dependence a new
monopole operator was proposed recently [9]. Note that
even the pure gluodynamics contains electrically charged
fields in the Abelian projection: the off-diagonal gluons
are (doubly) charged with respect to the diagonal gluon
fields. Thus the newly proposed operator [9] is more
suitable for the investigation of confinement in SU(N)
gauge theories then the older one [3]. The purpose of this
paper is to check numerically whether the new monopole
creation operator is the order parameter in theories with
matter fields. Below we study compact Abelian Higgs
model in the London limit having in mind the further
numerical investigation of the new monopole creation
operator in non-Abelian gauge theories.

The original version of the gauge invariant monopole
creation operator [3] in compact U(1) gauge theory is
based on the duality of this model to the Abelian Higgs
model. The Higgs field ¢ is associated with the mono-
pole field and the non—compact dual gauge field B,, rep-
resents the dual photon. The gauge invariant operator
which creates the monopole in the point z, can be writ-
ten as the Dirac operator [4] in the dual model:

BL(H) = ¢, e (BH-), (1)

where the magnetic field of the monopole, H, is defined
in the 3D time slice which includes the point z. By defi-
nition, the magnetic monopole field satisfies the Maxwell
equation, divH = §%(z) which guarantees the invariance
of the operator ® under the dual gauge transformation:
¢ — ¢e*, B — B+da. (2)

The monopole creation operator (1) can be rewritten

in the original representation in terms of the compact

field 6. In lattice notations the expectation value of this
operator is [3]:
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(@mon) :% /D0 exp{—S(d0 + W)},

z= /’DH exp{—S(do)}. (3)

For compact lattice electrodynamics the general type of
the action satisfies the relation: S(d@ + 27n) = S(df),
n € Z. Besides the Coulomb monopole field H the
tensor form W = 276A~'(H, — w,) depends on the
Dirac string w which ends at the monopole position,
0*w, = *d,, and is not restricted to the 3D time—slice.

The operator (1) is well defined for the theories with-
out dynamical matter fields. However, if an electrically
charged matter is added, then the creation operator (1)
depends on the position of the Dirac string. To see this
fact we note that in the presence of the dynamical matter
the dual gauge field B becomes compact. Indeed, as we
mentioned the pure compact gauge model is dual to the
non—compact U(1) with matter fields (referred above as
the (dual) Abelian Higgs model). Reading this relation
backwards we conclude that the presence of the mat-
ter field leads to the compactification of the dual gauge
field B.

The compactness of the dual gauge field implies that
the gauge transformation (2) must be modified:

¢ — e, B — B+da+ 27k, (4)

where the compactness of the gauge field, B € (—m, 7],
is supported by the integer—valued vector field &k =
= k(B, a). The role of the field % is to change the shape
of the dual Dirac string attached to the magnetic charge
in the dual theory. One can easily check that the operator
(1) is not invariant under the compact gauge transfor-
mations (4):

SN (H) — @70 (H) (), (5)

This fact was discussed in Ref. [9]. According to
eq.(5) if the field H is integer—valued then operator (1)
is invariant under compact gauge transformations (4).
This condition and the Maxwell equation require for the
field H to have a form of a string attached to the mono-
pole (“Mandelstam string”): H, — j,, j € Z. The
string must be defined in the 3D time—slice similarly to
the magnetic field H. However, one can show that for a
fixed string position the operator ® creates a state with
an infinite energy. This difficulty may be bypassed [9]
by summation over all possible positions of the Mandel-
stam strings with some measure u(j):

‘I)xfon,new — ¢z Z N(jz) ei(B,J'a) . (6)
*ia€Z
0* jo=0a

If Higgs field ¢ is g—charged (¢ € Z), the summation
in eq.(6) should be taken over ¢ different strings each of
which carries the magnetic flux 1/q. The transformation
of ®71°™¢¥ to the original representation can be easily
performed and we get the expression similar to eq. (3).

In this publication we present the results of our nu-
merical investigation of the operator ®°™"¢¥ (6) in the
compact Abelian Higgs model with the action:

S = —Bcos(df) — v cos(dy + ¢b), (7

where @ is the compact gauge field and ¢ is the phase of
the Higgs field. For simplicity we considered the London
limit of the model in which the radial part of the Higgs
field is frozen. We calculated the (modified) effective
constraint potential,

Ver(®) = —In((5(@ — @mommev)) ). (®)

We simulated the 4D Abelian Higgs model on the
4% 64,8 lattice, with v = 0.3. The larger charge, g, of
the Higgs field, the easier the numerical calculation of
Vesr(®) is. We performed our calculations for ¢ = 7.
For each configuration of 4D fields we simulated 3D
model to get the Mandelstam strings with the weight
1(jz) which we specify below. We generated 60 statisti-
cally independent 4D field configurations, and for each
of these configurations we generated 40 configurations of
3D Mandelstam strings. We imposed the anti-periodic
boundary conditions in space.

To define the measure p in eq.(6), we introduce the
auxiliary 3D XY theory, “living” on the time slice z°
with the action:

2

: (9)

K

S(X,T’) = E

dx — 27B
q

+ 27r

where x is O—form with value in [—7gq, 7q] and r is Z—
valued 1-form. One can prove that

< eXeemXR Sp (B) ~ elBHs), (10)

In space dimension d > 3, for sufficiently large x and suf-
ficiently small B, (eX=e~Xv) — const as |z — y| — oo.
Moreover, two—point function (eiX=e iX®)(B) is peri-
odic in B, with period 1. Hence, it has the following
Fourier representation: similar to (6):

. . 1 N B
(e tmyB) == Y u() e, )
ja€Z

0ja=0.—0r

where the measure y is defined by:
SN 1.2
u(iz) = exp{—olizlI’ }. (12)
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Thus in the theory with the action (9) the two—point cor-
relation function has the representation (10) analogous
to the original representation (1) for the monopole cre-
ation operator and the dual representation (11) is anal-
ogous to the new representation (6) for the monopole
creation operator. Therefore the measure in (6) should
be defined by (12).

It is well known [10] that the 3D XY model in
the Villain formulation has the phase transition for
ke(B = 0) = 0.32. According to suggestion of Frohlich
and Marchetti the expectation value of the operator (6)
should be an order parameter in the k > k. phase, where
the density of the Mandelstam strings p, is large enough.
Our numerical observation has shown that in presence of
the external field B, k.(B) ~ 0.42. In Fig.1 we present
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Fig.1. The effective monopole potential (8) in (a) con-
finement and (b) deconfinement phases

the effective potential (8) in the confinement (3 = 0.85)
and deconfinement (3 = 1.05) phases for positive val-
ues of the monopole field. The potential is shown for
two values of the 3D coupling constants k > k. corre-
sponding to high densities of the Mandelstam strings.
In the confinement phase, Fig.la, the potential V(@)
has a Higgs form signaling the monopole condensation.
According to our numerical observations this statement
does not depend on the lattice volume. In the deconfine-
Mucema B MIAT® Tom 75
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ment phase, Fig.1b, the potential has minimum at & = 0
which indicates the absence of the monopole condensate.

For the small values of the 3D coupling constant &
(in the phase where Mandelstam strings j, are not con-
densed), it was observed (Fig.2) that the potential V()
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Fig.2. The effective monopole potential (8) in the
low-k region of the 3D model

has the same behaviour for the both phases of 4D model.
Thus the operator (6) serves as the order parameter for
the deconfinement phase transition, if the density of the
Mandelstam strings is high, i.e. & should be larger than
ke(B).

Summarizing, the new operator can be used as a test
of the monopole condensation in the theories with elec-
trically charged matter fields. Our calculations indicate
that the operator should be defined in the phase where
the Mandelstam strings are condensed as it was sug-
gested by Frohlich and Marchetti. The minimum of the
potential, corresponding to the value of the monopole
condensate is zero in deconfinement phase and non zero
in the confinement phase.
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