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We study the kinetics of 2D Bose gas cooling provided Bose particles interact with 3D phonons. At low
temperatures phonon emission is prohibited by the energy and the momentum conservation. We show that
both particle-particle scattering and impurity scattering assist Bose-gas cooling. The temporal relaxation of
temperature follows the law T ~ 1/+/t above the Berezinski-Kosterlitz-Thouless phase transition point and
T ~ 1/t after a Bose-Einstein 2D quasi-condensate develops.

PACS: 05.30.Jp, 71.35.+z

Exciton gas in GaAs bilayer quantum well represents
a system where a 2D Bose-Einstein quasi-condensation
(BEQC) is possible at low temperatures. Experimen-
tal efforts [1, 2] have been directed to produce such an
exciton gas and to cool it down to BEqC temperature.
A short laser photo-illumination pulse excites electron
and hole pairs. The so-called indirect exciton technique
is used where a perpendicular electric field drags elec-
trons and holes apart into two spatially separated lay-
ers. Then an electron and a hole bind themselves into
an indirect exciton particle. This experimental setup
suppresses the electron-hole recombination giving rise
to a relatively long exciton life time. During the ini-
tial photoexcitation pulse newly born excitons are hot
and form a non-equilibrium state. In short time after
the pulse ends the exciton gas reaches the equilibrium at
some effective exciton temperature which is much higher
than the lattice temperature of the cold GaAs crystal.
Frequent exciton-exciton collisions ensures the exciton
temperature to be uniform across the bilayer. Exciton
gas then start to cool down slowly due to emission of
phonons into a crystal away from the bilayer. This is
the longest phase of the experiment limited only by a
decay time of excitons due to the electron-hole recom-
bination. In order to reach BEqC point one needs both
low temperature and a high density of excitons. Hence
a fast cooling is essential.

An important point is that the phonon emission gives
the only way for exciton gas to cool. Otherwise it is a
closed system with conserved energy. Recent calcula-
tion of energy losses in 2D ideal exciton system has pre-
dicted an extremely slow cooling at low temperatures
with the temporal law T'(t) ~ 1/log(t), where ¢ is the
time [3]. This fact is intimately related to the energy
and momentum conservation which prohibits an emis-

sion of phonons by an exciton moving slower than the
velocity of sound in GaAs crystal ¢. Thus, the exciton
gas cooling appears to stop when the exciton temper-
ature falls below a characteristic blocking temperature
T, = mc?/2, where m is the mass of exciton, even if the
crystal temperature is zero.

This kinetic bottleneck problem becomes especially
acute when the exciton gas is subjected to a strong per-
pendicular magnetic field that quenches the motion of
exciton to the lowest Landau level and, thus, is helping
to bind electrons and holes into exciton pairs. In this
case the effective mass of an exciton is determined by
the Coulomb interaction and can be much larger than
either the electron or hole mass [4]. This results in a
higher blocking temperature 7} and makes it difficult to
reach low temperatures in the end.

In this communication we supplement the analysis
of exciton cooling of Ref.[3] by an addition of exciton-
exciton collisions and scattering on impurities. Both
events assist the phonon emission. We specialize to the
case of exactly zero lattice temperature which allows us
to neglect exciton-phonon scattering. Actually we are
dealing with a general problem of 2D Bose gas cooling
provided its particles interact with 3D phonons. The
universal nature of 2D scattering at low energy of in-
coming particles makes these two assistance mechanisms
to be robust to specific details of a particle-particle or
impurity potential. The latter is only assumed to be
short-ranged with the characteristic interaction radius
ro being shorter than the DeBroigle wavelength. For ex-
ample, the indirect exciton interacts with an impurity
or another exciton via the electron-hole dipole moment
ed, directed along the normal to the bilayer. Hence, the
radius of such a dipole interaction equals to the spacing
between the electron and the hole layers ¢ ~ d.
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The Hamiltonian of the particle phonon interaction
can be written generally as

Hz—ph =

= [ [4T(£)9(r)d(2)Ti(p — p)ui(p’) d®p'd’rdz, (1)

where p = (r, z), ¥+ and 1 are the particle creation and
annihilation operators and u is a crystal deformation in-
duced by an acoustic phonon. Wavelengths of relevant
phonons are much larger than the width of the bilayer
d. The lattice deformation u can be expanded into the
normal phonon modes as

1/2
wlp) =Y () (elbi () + (@),
»q (2)

where b and bs are the phonon creation and annihila-
tion operators of polarization s, p is the mass density
of solid, ws(q) = cq is the phonon frequency disper-
sion, which we assume to be isotropic and independent
of phonon polarization s.

The exciton phonon interaction in GaAs crystal can
be separated into piezoelectric and deformation poten-
tial parts. Lattice deformation in a piezoelectric crystal
induces a polarization density P; = B;jx0jux [5], where
Bijx is the piezoelectric tensor. This polarization in-
teracts with the exciton dipole moment. In the limit
gd < 1, the deformation potential for an exciton O,
is a sum of the deformation potentials for an electron
and a hole taken at the same spatial point. The lat-
ter represents a change of the semiconductor gap due
to the local compression caused by a phonon deforma-
tion. Combining the piezoelectric and deformation parts
and expanding the crystal lattice deformation in acoustic
phonon modes we write the the exciton-phonon vertex
in the Hamiltonian (1) as [5]

47q,q;
Li(q) = (@%' + edfBijk %) . 3)

For a cubic GaAs crystal without the inversion center
Bijx = B if all 4, j, k are different and zero otherwise. In
the limit of large d the piezoelectric part dominates over
the deformation potential but in the experiments [1, 2]
d ~ 50A and both exciton-phonon interaction terms are
of the same order of magnitude © =~ 4mwed( ~ 10€V.

Amplitude of phonon emission is given to the lowest
order of the perturbation theory by the following matrix
element

i7(a) =< fas|Hpn|i0 >, (4)
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between initial state of Bose gas |¢0 > with no phonons
and the final state of Bose gas |fqs > with just one
phonon specified by the momentum q and the polariza-
tion s. We assume that the thermalization of the Bose
gas due to particle-particle scattering is much faster than
the slow cooling due to phonon emission. Thus, at any
given time ¢ the Bose gas is characterized by an effective
temperature 7'(t). This temperature defines the total
gas energy E = E(T). The Fermi Golden Rule gives the
probability of phonon emission per unit time and one
needs to multiply it by the phonon energy w,(q) = cg,
to find the total energy losses

dE 2T
B = 20N cal My (@)PO(B: ~ By —cq) (5)

fas

Eq.(5) has to be averaged over Gibbs distribution of the
initial state with the effective temperature T'(¢). Both the
initial and the final states of the Bose gas are calculated
in the interaction representation (see e.g.[6]). Particles
are confined to the 2D layer and the energy losses are
proportional to the area of this layer.

In the experiments [1, 2] the exciton gas is dilute
nré < 1. Popov has shown [7] that for a 2D dilute Bose
gas there is a 2D Berezinski-Kosterlitz-Thouless phase
transition point

2mnh?

c= ma (6)

that separates high-T' almost ideal Bose gas phase from
the low-T" superfluid phase. Actually, Popov theory is
controlled by the large logarithm

E
L ~ —log(nry) ~ log ?0, (7)
C

where n is the particle density, Ey = h%/rgm, g is the
particle internal degeneracy [7]. For a Bose particle
g =25 +1, where S is the spin of particle. It was shown
in Ref.[8] that electron and hole spins flip rapidly due
to the spin-orbit interaction. Thus, g = 4 for a GaAs
exciton.

For 2D dilute non-ideal Bose gas one can distinguish
three temperature regions. At high temperatures 7' >
> T.log L, the ideal Bose gas is a good approximation.
At intermediate temperatures ¢7./L < T < T./logL,
overwhelming amount of particles constitute 2D BEqC
with the density

ny,=n(l-T/T,), (8)

whereas a small fraction of thermal particles have the
bare dispersion and Bose distribution with the chemical
potential p = gT./L [7]. At low temperatures T < u, a
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weak particle-particle interaction is crucial and the qua-
siparticle excitations of the Bose system acquire Bogol-
ubov sound like dispersion. Here the transfer of momen-
tum to impurity becomes inefficient because the qua-
siparticle has a vanishing scattering cross-section on a
point-like impurity. In the case of excitons in GaAs
crystal the intermediate-T region hardly exists at all.

At T > T, a phonon is emitted perpendicular to the
layer. Using Eq.(5) we calculate the total energy losses
here:

dE T, T3
h% = _7271'Tz27ph A’I’L, (9)

where A is the total area of bilayer. It is convenient to
define a characteristic exciton-phonon energy:

_ pcSh3
Te-ph = \/@2 ¥ (4rdeB)?/15° (10)

In the case of GaAs T,_,, ~ 5K. Using the ideal gas
equation of state: E(T) = AnT, we get the temperature
relaxation law: T(t) ~ 1/+/t.

At T < T, an unassisted phonon emission is for-
bidden. Fig.1 shows two ways of particle scattering
accompanied by an acoustic phonon emission. The
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Fig.1. Amplitude of exciton-exciton scattering (a)
and exciton-impurity scattering (b) accomponied by
phonon emission. Full lines correspond to the propa-
gation of exciton, dotted line correspond to the prop-
agation of phonon. Wave line describes interaction
either between excitons or exciton and impurity

left diagram shows a scattering on the second parti-
cle and the right diagram shows a scattering on impu-
rity. First, we treat this problem in the high-T" and
intermediate-T regions where particles have the bare dis-
persion: € = p?/2m. 2D scattering amplitudes in both
cases are isotropic and depend only on the total kinetic

energy in the center of mass frame: £ (in the impurity
case £ = ¢) in the limit £ — 0:

27‘(’712 E(] -1
F)=- 1 11
€)= -2 (e ) D)
where m* = m/2 for particle-particle scattering and

m* = m for the impurity scattering (see e.g. [7]). Both
particle-particle interaction line and the impurity line on
Fig.1 correspond to the scattering amplitude F'(£). The
total amplitude of assisted phonon emission is univer-
sal in both cases and is given by the following matrix
element:

:f (@) =
=C|F(E&)L+F(E- cq)L efT;i(q) 2 (12)
cq —cq) " 2pc’
where C = 2 for the particle-particle scattering and

C = 1 for the impurity scattering. We neglect the
phonon momentum transfer qj|, to the particle because
q) Lp,p Kem,if T < Ty

Plugging Eqs.(12), (3) into Eq.(5) and taking the in-
tegral over the final state of the Bose gas we obtain the
total energy losses per unit time. In the high-T region
we get:

d_E_ 27c? / 1 1 2><

dat — RT?_,, log(Eo/e) log(Eo/€')
d3q

(2m)®’

where K(e,7) = 2AnN(e)(1 + 1/g) in the case of
particle-particle scattering and K (e,T) = AnppN(€)/2
in the case of impurity scattering. n;m,p is the areal den-
sity of impurities and

N(e) =

x K(e,T)(e — € — cq)dede’ (13)

1
exp ((e —p)/T) -1
is the Bose-Einstein occupation number. Combining the

particle-particle and impurity contributions we find the
total cooling rate:

(14)

ar 8 h T
& (1 +1 ) (g

From Eqgs.(9), (15) we conclude that the temperature
dependence of the 2D Bose gas cooling rate is the same
above and below the phonon emission threshold: T =
=Tp.

In the intermediate-T region at g = 1 the cooling rate
is enhanced by the stimulated scattering into the BEqC
final states:
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ar__ ORI
e = e (04ne0 = G mim )

y 2kt log® L T?

2 1 72
m L Tz_ph

(16)

In the low-T region the thermodynamic equation of
state reads: E(T) = A((3)T?3/ns?, where s is the Bogol-
ubov sound velocity: s = y/p/m. In order to calculate
the energy losses we apply the Bogolubov unitary trans-
formation to the Hamiltonian (1):

Hpn = = ; 2elzp) ¥ ()T (—p + Q)T (a)ui(q) +c.c.
(17)

This Hamiltonian allows emission of phonons. The cool-
ing rate in this case is also enhanced by the condensate
stimulation:

dT _ HZ ¢(4) 2
e, ()™

z—ph
In both cases of condensate stimulation we find the tem-
perature relaxation law: T'(t) ~ 1/t.
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Fig.2. Kinetic phase diagram showing the posibility
to reach a Bose Einstein quasi-condensate phase in
the GaAs indirect exciton bilayer

For experimental realization of an exciton cooling
the most relevant is Eq.(15). Integrating it and insert-
ing L ~ 6 and n >> nymp we find the overall cooling
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time t. required to reach the phase transition point.
Here one can distinguish two cases: i) cooling of ex-
citon gas with constant density e.g. sustained by pho-
toexcitation and ii) cooling of decaying exciton gas with
n(t) = ngexp(—t/7,), where 7, is the exciton recombi-
nation time. We find:

te = ChT?_,,/T-(n)?, (19)

where T.(n) is the BKT temperature as a function of
the exciton density n (6), C ~ 10 in the case i) and
C = 30 in the case ii). Note that C does not depend on
exciton mass m and in the case ii) the best condition for
reaching T, occurs at t = 7,./3. Eq.(19) defines a line
in the bilayer parameter space: (n,7,) or equivalently
(T.(n), 1), separating the two kinetic phases — one that
can condensate and the second that remains above T,
during the exciton life time 7,.. Fig.2 shows this border-
line for the case of a thin GaAs bilayer.
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