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Generation of two-photon KLM quantum channel
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As demonstrated by E. Knill et al. [Nature 409, 46 (2001)] quantum teleportation and quantum logic
gates with success probability close to one can be implemented using only linear optical elements, additional
photons and post-selection. To do it, special quantum channels are requested to have in sight before quantum
teleportation performance. Here, we propose experimental arrangement to generate two-photon KLM state
different from well- known Bell states. This two-photon KLM state can be used to enhance success probability
of the quantum teleportation of one-mode quantum qubit from 0.5 up to 2/3.

PACS: 03.67.Lx

The theory of quantum computation promises to rev-
olutionize the future of the computer technology in fac-
toring large integers [1] and combinational searches [2].
For quantum communication purposes entangled states
of the light fields are of particular interest. Such states
can also be used, for example, for quantum key distri-
bution [3] and quantum teleportation [4]. The entan-
gled states are useful for the quantum processing, but
they are hard to produce and the states tend to decohere
fast. Spontaneous non-collinear parametric down con-
verter with type-II phase matching is considered to pro-
duce true two-photon entanglement (a Bell maximally
entangled state or Einstein-Podolsky-Rosen (EPR) pair)
along certain directions of propagation of the gener-
ated optical beams [5]. One should mention, such EPR
states give a possibility to observe, for example, process
of quantum teleportation with probability of success of
50% [6]. The problem is that nonlinear interactions be-
tween individual photons are required to implement the
quantum teleportation protocol that operates with 100%
efficiency [7]. In order words, the inherently nonlinear
Bell-state measurement must be performed for achieve-
ment of the 100% teleportation [8].

But nevertheless, it was recently recognised success
probability of the quantum teleportation as well as con-
trolled sign gates can be increased close to one by in-
creasing the number of the ancillary optical modes, pho-
tons, and beam splitters [9]. To do it special quantum
channels which we call KLM (E.Knill, R.Laflamme,
G.J.Milburn) ones must be prepared before. The op-
tical qubit interact with the KLM quantum channel by
passing through a network of beam splitters and phase
shifters [9]. Depending on the measurement result in
ancillary modes [10], the quantum teleportation can be
performed with success probability more of 50% [9]. In
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the paper, we propose method to generate two-photon
KLM state
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where, henceforth, the numbers in the subscripts of the
used states are related to the optical modes of the pho-
tons [11]. For example, the state |1100)1234 in Eq. (1)
is a tensor product of one-photon number states where
the modes and are occupied by two photons while the
modes 1 and 2 have zero photons.

1
—75{1100) +[1001) + 0011} }ros, (1)

To generate two-photon KLM state (1), we are going
to make use of the induced parametric down converter
with type-I phase matching (IPDCI) with one input sig-
nal photon to the non-collinear spontaneous parametric
down converter with type-I phase matching (SPDCI).
For our purpose, we use experimental setup shown in
Figure. First, let us consider SPDCI in detail. We are
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Experimental setup to produce two-photon KLM state
consisting from three coupled SPDCI. PS means phase
shifter



514 S. A. Podoshvedov

going to describe the SPDCI as well as IPDCI by sim-
plified three- mode Hamiltonian [12]

thr ., .o

Hl = 2 (al Qs Qp — (Al;,rflzfll), (2)

where a1, G2, are the modes of down converted photons,
operator a, is the mode of the powerful beam pumping
simultaneously first and second down-converted crystals
through the balanced beam splitter as shown in Figure,
and the coupling coeflicient r is related to the nonlinear
second-order susceptibility tensor x(?). The simplified
three-mode Hamiltonian of the non-collinear SPDCI is
applicable in the case of continuous wave pumping when
we neglect multi-frequency structure of the pump and
use narrowband filters to choose only modes satisfying
the phase matching condition. According to [12], the
output function of the SPDCI with input state |00)12|a),
is given by

w5 = Z<aﬂ) na1ln)alio ) (32)

n=0
where the partial wave functions |zp((gg)) p in the pumping
mode are given by

o) = o™ 3T ()
W = ex (=13 )mEZjO e,
(3b)

where the function f(z(er"))(ﬂ) is responsible for the
output wave amplitude [12], the subscript (00) in the de-
finition of the functions |¢ 00))pmea,ns the input states
in the signal and idler modes were in vacuum and the
superscript in the designation of the output function
|‘Ilg2)) of the SPDCI concerns to the numbers of the
generated modes. Here, the magnitude a is the am-
plitude of the coherent state input to the SPDCI and
the coefficient 3 is responsible for the “strength” of the
SPDCI [12]. The output non-normalized wave func-
tion of the SPDCI (3b) can be significantly simplified
if we make use of the af <« 1 approximation that
takes place in practice and decompose the output wave
amplitudes f 2(m+"))(ﬂ) (Eq. (3b)) into asymptotic se-
ries in small parameter 8 < 1 to take into account

only first term of the series ( 1(2”) 8) ~ 1, f(2'n, B) ~
~ Bym, FEB) ~ B/l =1), ..., V@) ~
~ B 1\/n n—1)...(n—m+2) and so on for any

m§n+1) [12]

1252 = 3 (@B)™n)iln)ala)y. (3¢)

n=0

Now, let us consider IPDCI with one input signal
photon and no photons in the idler mode, in order words,
if the input conditions to Hamiltonian H; (Eq. (2)) are
chosen, for example, as |10)12|a),. Following the same

technique as in the case of SPDCI [12], we can write the
wave function of the IPDCI as

Z e ie ™), (4a)

n=0

) =

where

95 = 5460 Ok a4,

(4b)
with the wave amplitudes f,g?f;;l)( ;8 (k=1,...,n+

+ 1) satisfying the set of linear differential equations
df(2n+1)

ﬁ_ﬁ VE(k=1)(n —k+2) f 0 -

~VE(E+ D) (n—k+ DT (4c)
The following input conditions f1((fo)) (s = 0 =
= exp(—[a?/2)a"/v/n! and fio) (s = 0) = 0 for
k =2,...,n+1 are imposed on the Eq. (4c). Here,
the symbol in the subscripts of the Egs. (4a-e) is
introduced to distinguish the states (4a-c) from the
states (3a,b). The output wave function of the IPDCI

|\Ilg12)) (Eq. (4a)) can be rewritten as

Y (@) m)lnhalvl)p,  (4d)

n=0

7)) =

where the partial wave functions |¢8‘3))p in the pumping
mode are given by

[e) m ¢(2(m+n)+1)
(my _ o " foriae)  (B)
[%(10))2 = exp (_ 5 ) ) Gn

= (m + n)!

Im)p.

(4e)
Smallness of the parameter 3 < 1 allows for one
to decompose the wave amplitudes f,g?lg;Jrn)H) (B)
into asymptotic series in the small parameter (3 re-
stricting the decomposition only by first term in the

case of 8 <« 1. Then, we get f(i(?ag)l)ﬂ)
~ B*/n+1y/(n+m)(n+m—1)...(m+1) and the
output wave function of the IPDCI with one input signal

photon in the af <« 1 approximation is given by

(e o)

D (@B)"Vn+1n+ i[n)sla),  (4f)
n=0

Now, we are ready to describe more detailed the ex-
perimental setup in Figure to produce the two-photon
KLM state. First SPDCI produces the outcomes given
by Egs. (3a-c). We are going to make use of the
afl < 1 approximation valid in practical case to deal
with only the following non-normalised wave function
|¥;n) = {|00) + aB|11)}12]|)p (input to system of two
coupled IPDCI in Figure) neglecting higher order in pa-
rameter af < lterms in the output wave function of

7)) =
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the SPDCI (Eq. (3c)). Next step is related to the sys-
tem of two down converted crystals with identical re-
sponses pumped simultaneously by powerful pumping
modes as shown in Figure. According to Figure, the
pumping mode in coherent state with amplitude o (o) p)
passes through the balanced beam splitter transforming
to the state |a/v/2)p, [ic/V/2)p,, where the subscripts p
and ps refer to the first and second output modes of the
beam splitter while the subscripts and are concerned the
input modes to the beam splitter, respectively. We are
going to apply phase shifter to avoid 7/2 phase shift in
the second pumping mode m3. The phase-shifter is the
optical element that acts on a single mode to cause a shift
% in the phase of the mode state. The underlying uni-
tary evolution operator is Pp, = exp(—@d,},dy,). Then,

we have the following relation 1/5,,2 at, 13;; = exp(—ig)a},
that enables to destroy w/2 phase shift in the second
pumping mode p; if we chose ¢ = m/2. One of the gener-
ated modes by the SPDCI (namely mode 1) is launched
into first down converted crystal while the other mode
(namely mode 2 which we label as 4 in Figure) is entered
to the second down converted crystal. Then finally, the
input state to the two down converted crystals becomes
@) = {]0000) +/3]1001) }1234|t/ v2) ., [/ V/2)p, after
the beam splitter.

As consequence of such input to the down converters,
the outcome of the system is divided into two groups,
namely, one of the part of the state |¥;,) originating
from the input state |OOOO)1234|01/\/§),,1 |a/\/§)p2 gives
a rise to the SPDCI process and other part of the in-
put state |¥;,,), namely, a3|1001)1234|a/v2)p, |0/ V/2)p,
is responsible for the IPDCI.

We make use of the three-mode simplified Hamil-
tonian Hi, for the system of two down converted crys-
tals with identical responses pumped simultaneously by
powerful pump modes

Hyy =Hy +Hy =

— d;;dgdl +ada
where the subscripts for quantum operators in (5) are
referred to the corresponding signal, idler (modes 1-4)
and pump modes (modes p; and ps), the coupling con-
stant r' is related to the system of coupled down con-
verters, and the Hamiltonians H; and H, are concerned
first and second down converters in Figure, respectively.
The Hamiltonian H;» (5) gives a rise to the following
wave function

[Tou) = (TGN TED) + g ey @3y, (6)

with the corresponding wave functions |lIlg2)) and
|\II(112)) (Egs. (3a,b), (4d,f)) in the first and second out-
put ports and the states |\Ilg.34)) and |\Il§34)) in the third
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and fourth output channels, respectively. That fact that
the parameter a3 in practical case takes a value much
less of one (af < 1) ) gives a possibility to rewrite the
output wave function only taking into account vacuum
states and terms proportional to the factor af as

[Tou:) = {|0000) + af'/v/2(]1100) + [0011))+
+f311001) haza|@/V/2)p; [/ V2)yp,- (7)

Here the parameter 3’ is related to the coupling con-
stant of the system of two SPDCI pumped simultane-
ously through the balanced beam splitter. Finally, we
get superposition of the vacuum state with two-photon
KLM state (1) (Eq. (7)), if we take 3’ = v/23. One
should mention, proposed experiment is based on use
of coupled IPDCI, which is inherently random. Con-
sequently, we can determine whether a pair of photons
has been generated only by postselection produced by
detectors. The same random generation of the superpo-
sition of the vacuum and Bell states occurs in majority
of current experiments [5,6], when the randomness of
the generated pair is not essential. The proposed in
Figure scheme can become basis for generation of other
types of KLM states, for example, four-photon KLM
state |rty) = 35_q [0)7[1)279]0)29|1)7 written in terms
of the qubit encoding [9] by use of quantum encoding
technique. The state |rt2) can be used to teleport two-
mode qubit with success probability of 2/3 [9].
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