Pis’'ma v ZhETF, vol. 82, iss. 8, pp. 539543

© 2005 October 25

Quantum limits of feedback cooling in optical lattices
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A quantum mechanical analysis of feedback cooling [see Phys. Rev. Lett. 94, 1563002 (2005)] of atoms
trapped in a far-off-resonant optical lattice is presented. The model considered is valid for ultralow energies of
atoms allowing thus for the study of an ultimate cooling limit. The influence of the measurement-induced noise
and feedback-induced atom-atom correlations on the cooling efficiency is discussed. It is shown that there are
regimes where the quantum noise can be effectively compensated for.

PACS: 32.80.Pj, 42.50.Lc

At present manipulation and control of single atoms
and atomic ensembles represent important challenges
for experimentalists and theoreticians. A widely used
strategy for manipulating atoms is based on the reso-
nant interaction of atoms with laser fields [1]. However,
application of resonant fields considerably restricts the
controllability due to the noise induced by spontaneous
emission. Moreover, only atomic species possessing spe-
cific cyclic transitions resonant with available lasers can
be addressed in this case.

On the other hand, the range of accessible atomic
species can be extended and the spontaneous-emission
noise can be diminished if one would be able to use
far-off-resonant laser fields to control atoms. In this
case the mechanism of manipulation would be the non-
resonant interaction of the induced atomic dipole mo-
ment with laser light (AC Stark effect) which results in
a dipole force acting on atoms. This mechanism can be
conveniently realized in far-off-resonant optical lattices.
An optical lattice is a periodic light-shift potential seen
by neutral atoms located inside an interference pattern
formed by laser beams tuned far from the atomic transi-
tion. Adjusting wavelength, polarization, and intensity
of the lasers forming the optical lattice one can flexibly
control the motion of cold atoms [2—5].

In particular, some years ago the possibility of us-
ing feedback to control the motion of cold atoms in an
one-dimensional optical lattice has been experimentally
demonstrated [6]. As is also proposed in Ref. [6], the
concept of feedback can be applied to cool atoms in a
manner similar to stochastic cooling [7, 8]. In the re-
cent paper [9] the realization of such a feedback cooling
(termed as “optical shaking”) has been elaborated in
more detail and the operation of this cooling technique
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has been studied in the classical limit. The classical ap-
proach developed in [9] can be successfully applied to
describe cooling in the case of sufficiently high energies
of atoms. However, it does not apply in the limit of low
energies when quantum effects start to play a significant
role. In this case the noise introduced into the system
due to the measurement can strongly restrict the cool-
ing efficiency and therefore should not be ignored. Fur-
thermore, as will be shown below the cooling efficiency
is also influenced by atom-atom correlations, which ap-
pear due to the feedback process itself. The effect of
these correlations is not evident from the discussions in
Ref. [9].

In this letter the feedback cooling of atoms in opti-
cal lattices is studied on the basis of the quantum the-
ory. Such an approach will allow us to study the effect
of both feedback-induced noise and atom-atom correla-
tions on the cooling efficiency at low temperatures and
estimate the cooling limit as well.

We restrict our consideration to the case of one-
dimensional optical lattice. In the limit of low tempera-
tures the optical lattice potential can be approximated by
the array of harmonic potential wells with each well con-
taining only one atom. The tunneling of atoms between
neighboring potential wells can be neglected, which al-
lows us to distinguish atoms according to the specific
potential well they belong to. Consequently, the quan-
tum statistics of atoms is out of relevance in the consid-
ered model. Furthermore, being trapped in separate po-
tential wells the atoms interact weakly with each other,
which does not affect the evolution of the system consid-
erably and can be also neglected. In this case as will be
shown below a rather complete analysis of the evolution
of the system’s state is possible.

The feedback loop is organized as follows: The first
step is the measurement of the collective coordinate of
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atoms, which is the position of atoms with respect to
the center z; of their wells averaged over all wells or,
equivalently, over all atoms

N
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Here N is a total number of atoms, which is assumed to
be fixed and §; is the coordinate of the i-th atom. The
constant c-number

1 N
¥ D (2)
=1

can be ignored.

The average coordinate (1) is obtained experimen-
tally measuring the imbalance in intensities of laser
beams forming the lattice, which appears due to the in-
teraction with atoms, see Ref. [6] for experimental de-
tails.

Then the measurement outcome ) of the observ-
able Q is used to perform the spatial translation of the
optical-lattice potential to compensate for the measured
coordinate. The compensation of this coordinate leads
to the decrease of the total potential energy of atoms
and, hence, to cooling of the gas.

The time duration of the measurement and the lattice
shift is assumed to be negligibly small compared with the
characteristic time of the free evolution of atoms in the
lattice potential [6]. Therefore the oscillations of atoms
in the lattice potential during the feedback operation will
be neglected.

The quantum state of the system after a single feed-
back step is given by the density operator p. :

Py = / dQ U(Q) 31

Here p_ is the many-atom density operator before the
feedback, the operator M (Q) describes the effect of the
measurement on the system conditioned on the measure-
ment outcome Q, and U(Q) is the unitary shift of the
collective coordinate Q to zero. In general, feedback
is an automatic process requiring no intervention of an
experimentalist. Thus the quantum state of the system
after the feedback is obtained averaging over the all pos-
sible measurement outcomes Q.

To include imprecision measurements are described
in terms of operators constituting a positive operator-
valued measure (POVM) [10]. Thus the operators M(Q)
appearing in Eq. (3) are the measurement resolution

amplitudes constituting POVM. The simplest choice for
these operators is a Gaussian operator

)1/4 exp[_M], (4)
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where o is the resolution of a measurement device.
The shift of the collective coordinate of atoms to zero
being actually a one-parametric shift transformation is
described by the unitary operator

0(Q) = exp (iQP), (5)
where the generator
N
P=>"p (6)
i=1

is the total momentum of the atoms. The operator p;
in this equatlon is the momentum of the i-th atom. The
operator P is the canonical conjugate to Q with the stan-
dard commutator [Q, P] =i ?). It may be shown using
this commutator that the operator U(Q) acts on the ob-
servable Q as
e Qe =Q-iQP,Ql=Q-Q (V)
resulting in the required shift of Q by —Q.
It is advantageous to use a phase-space representa-
tion of the quantum state of the system introducing the
many-atom Wigner function defined as

W(p,q) = / d™y
Here q = {q1,92,.--,qn} and p = {p1,p2,...,pn} de-
note the vectors with components being the single-atom
coordinates and momenta, respectively. The many-atom
basis in Eq. (8) is the product of the single-atom basis
vectors, so that

2¥P(q+ylpla—y). (8)

l[a—y) = |g1—y1)|g2—y2) - - - [an —yn)- 9)

Using the definition (8) and Eq. (3) the Wigner func-
tion after a single feedback step can be written as

W (p,q) /deNydudu M(u)M* (') x

Zqz +u Zy

X eXP(—Zlyp) <q+y+Qe| p— Iq—y+Qe), (10)

xexpl

2)We use h = 1 throughout the paper.
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where e is the vector with N unit components: e =
{1,1,...,1}. Here the Fourier representation of the mea-
surement resolution amplitudes M (Q)

31(Q) = [ duM@) exp [(@- )], ()

with e-functions M (u)

szCifﬂmwﬁw (12)
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has been used. Changing now the variables u+u' = v
and u—u' = v’ in Eq. (10) and integrating then over v’
the Wigner function after the feedback operation reads

N
1 1 1
W (p,q) = o EXP (-W > %"H) X

4,j=1

2,,2
x /dQ dv exp (— o ) W- (p+570e a+Qe) , (13)

where W_ denotes the Wigner function before the feed-
back. This result can be rewritten in a compact form
introducing the following integral kernel

N
1 1
fm(Pa‘l; r.d) :ﬁexp<—W Z %"b‘) X
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2,2
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which gives

W (p,q) = /de’qu’ FY(p,q;p',d)W-(p',d').
(15)

The integral transformation (15) with the kernel (14)
represents the core component of the solution to the feed-
back problem and will be used below to study the dy-
namics of the system due to a number of feedback steps.

To do this the transformation of the Wigner function
due to the free evolution of atoms between feedbacks
should be included. Assuming that the time interval be-
tween two successive feedbacks is small enough, so that
the noise does not affect the system considerably, the
evolution of atoms between the feedbacks is governed
by the free Hamiltonian

X2 mw?
i - CL+ ﬁ) (16)
=1

and results in a simple rotation of the Wigner function
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W(p,q,t+At) = W(p',q,1),
p' = mw qsin(wAt)+p cos(wAt), (17)
q' = qcos(wAt)—(1/mw)p sin(wAt),

where At denotes the time interval after the last feed-
back step, m is the atomic mass and w is the vibrational
trap frequency. Now the resulting Wigner function after
arbitrary number of feedbacks and arbitrary duration
of free evolution between them can be found applying
Egs (15) and (17) in an appropriate sequence.

Aiming to effectively compensate the collective coor-
dinate of atoms one can try to find an optimal time in-
terval between feedbacks. This optimal interval can be
fixed considering the collective motion of the atoms in
the harmonic potential classically. It is easily seen that
taking the time interval between feedback steps equal to
the one fourth of the oscillation period At=7/4 the col-
lective motion is completely damped after two feedback
steps. Given another time of free evolution this would
normally take more operations.

Using Eqs (15) and (17) with At=17/4, the Wigner
function of the system immediately after the k-th feed-
back step (k > 2) is expressed as

w*(p,q) = /dp’dq’ F® (p,q;p',d)W-(p',d)
(18)

with the feedback kernel given by

1
F® (p,q;p'a') = 5 (40kN?+1) 71/ x

1 N
X exp (——202]\/.2 Z Qiq]') X

4,j=1

202 N
X —_— . . X
P ( 40iN211 iZj_lpsz)

x/dev5 [q'-{-cos (w%)q—sin (w%)p-l—@e] X

x & [p’+sin (w%)q+cos (w%)p—%e} . (19)

Given the measurement resolution being the same at
each feedback step, because of the 27-periodicity of the
feedback kernel, Eq. (19), the state of the system will
reach a quasi-stationary regime where the state after the
second step will be revealed with the four-step periodic-
ity. In the case of symmetric initial Wigner function the
period of oscillations can be shorter. For example, given
a thermal equilibrium state or a Fock state, the Wigner
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function after the second feedback step is not affected
by the next feedback operations. This represents certain
limitations of the cooling scheme.

To study the operation of feedback cooling in more
detail let us now specify the initial state of the atoms.
In most cases the initial state of the atoms can be rep-
resented by a thermal equilibrium state. Given distin-
guishable atoms in a thermal equilibrium state the atom-
atom correlations are absent. Thus, the initial state of
the many-atom system is then the tensor product of the
states of single atoms p_ = pi" ® pi @ --- ® pt. Conse-
quently the Wigner function is the product of the thermal
Wigner functions of N single atoms. It is given by

W_(p,q) =

N
p [- S Sh 2], (20)

_ [tanhT(rl /g)] N s

where ¢; and p; are expressed in units of the ground-
state position and momentum uncertainty in the trap
potential Agy = 1/1/(2mw) and Apy = /mw/2, re-
spectively. The parameter £ = kgT/(w/2) denotes the
single-atom energy in units of the ground state energy
in the trap. kp is the Boltzmann constant.

From Eq. (15) after the evaluation of corresponding
integrals the Wigner function after a single feedback is
found in the form

Wf) (p,q) =

- [tanhf/g)]N [Nolccjltatl/hgl (1/6) ]

B 1+No?(N -
2N2¢g2

X exp
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1 — No? tanh(1/¢)
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(N —1) tanh(1/¢) +N2¢71 Z 2

X exp [_ 2N[L + No? coth(1/€)]

tanh(1/¢)

iDj | » 21
2N[1 + No? coth(1/€)] g:lpp]] (1)

where o7 is now also measured in units of Agg. From
this equation one can readily see the appearance of cor-
relations between coordinates (the second term in the
first exponent) and momenta (the second term in the
second exponent) of different atoms. The factor in front
of the double sum over coordinates can be either nega-
tive or positive depending on the values of the number of
atoms, the measurement resolution, and the parameter
&. This means that the coordinates after a single feed-
back can be either anti-correlated or correlated. It is

worth noting that the momenta of atoms in contrast are
always correlated, which is the result of the measure-
ment back-action on the center of mass.

Using Eq. (21) let us now address the efficiency of a
single feedback step. It can be determined by calculating
the average energy change due to the feedback process:
AE = (H), — (H)_, where (H) is the average energy
of atoms after /before the feedback step.

Given the average energy of the system before the
feedback equals (H) = (Nw/2) coth(1/£) the total en-
ergy change due to the single feedback in units of the
ground state energy becomes

+ NLG%) - %coth(l /6).  (22)
The positive contribution in this expression is the mea-
surement induced noise resulting in the energy increase.
The first term arises from the imprecision of the coordi-
nate measurement and the second term is the back-action
noise. The negative contribution in Eq. (22) represents
the energy subtracted from the system due to the shift of
the collective coordinate and, thus, represents the sought
cooling effect. It is worth noting that the noise due to
the measurement can be minimized choosing the optimal
measurement resolution

1
AEW = 2 (Naf

1
Oopt — ﬁ

Consider now the effect of the second feedback step.
The Wigner function of the system after the second step
is obtained from the general result, Eq. (18), taking there
k=2. The average energy change after two subsequent
feedback steps with the free evolution between them dur-
ing 7/4 is given by

(23)

1 1
AE® = 5 (Naf + No? + W) — coth(1/¢), (24)
2

where 01,5 denotes the measurement resolution for the
first and the second step, respectively. From this equa-
tion one can see that the energy removed from the system
after two steps appears to be equal to the average energy
of a single atom being in a thermal equilibrium state.

The noise introduced into the system contains con-
tributions due to the measurement imprecision at both
steps and the measurement back-action at the second
feedback step. It is remarkable that the back-action
noise due to the first step is completely compensated by
the second feedback step. This is, however, true only for
the specific time intervals between two feedbacks equal
to At=71(1+2k)/4.

Thus, to minimize the noise it would be optimal to
perform the absolutely precise measurement of the coor-
dinate at the first step and then take the measurement
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resolution given by Eq. (23) at the second step. Taking
this into account let us find a theoretical limit for the
cooling, i.e. the temperature where the feedback does
not subtract the energy from the gas. In other words
at this temperature the average energy change would be
zero, AE=0. If we let AE=0 in Eq. (24) then the min-
imal energy in units of the energy of the ground state
where the feedback still works is

Ejim = coth(1/&ym) = 1. (25)

That is ideally the energy can be subtracted from the gas
always until all atoms are not at the ground state or, in
other words, the method exhibits no theoretical cooling
limits. This important result shows that the measure-
ment back-action noise could be, in principle, overcome
in an appropriately designed feedback scheme.

However, this theoretical limit can hardly be reached,
since the absolutely precise measurement at the first
feedback step would introduce an infinite amount of en-
ergy into the system, see the term corresponding to the
back-action noise in Eq. (22). Thus, in order to keep the
atoms in a laboratory until the next feedback the atoms
have to be trapped inside infinitely deep potential wells,
which would require in turn infinitely large intensities
of the lasers forming the lattice.

Therefore, the limit energy of the gas where the feed-
back still works is given by

No?
2 7

Eim =1+ (26)
where the finite accuracy of the measurement at the first
feedback is taken into account.

It is worth noting, that considered feedback cooling
method contrary to the standard laser cooling techniques
does not rely on resonant interactions of atoms with
laser fields. Therefore, its operation is not restricted
to the photon recoil limit as is the case in Doppler and
Sisyphus cooling, for example. As it can be seen from
Eq. (26) the minimal energy where the feedback loop still
provides the cooling effect is limited only by the mea-
surement accuracy. Except of the problems mentioned
above there are no fundamental constrains forbidding
the measurement resolution o; to be very small. Thus,
one can expect that the recoil limit can be overcome for
any particular sort of atoms and laser frequencies used
to cool them.

Using Eqgs. (18) and (19) one can show that for the
initial thermal state the phase-space volume occupied by
the atoms does not change after the third feedback step.
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Therefore, the only energy change is the energy change
due to the described above the first and the second steps.
Such a behavior may be understood as a result of the ap-
pearance of feedback-generated atom-atom correlations,
see discussion of Eq. (21).

Thus, aiming the practical use of the considered cool-
ing scheme at very low temperatures one should provide
a mechanism destroying the atom-atom correlations.

To conclude the scheme of feedback cooling of atoms
trapped in an one-dimensional far-off-resonant optical
lattice has been considered in the limit of low tempera-
tures. The evolution of the Wigner function of the atoms
due to a series of feedbacks with the free harmonic ro-
tation between them has been analytically derived. It
has been shown that in spite of the presence of quantum
noise the feedback scheme subtracts energy from the gas
at any temperature at least in principle. In a realistic
situation the limiting temperature, where the feedback
does not work is determined by the classical-type noise
due to an imprecision of measurements. In any case the
performance of the cooling scheme at low temperatures
is limited by the feedback-induced atom-atom correla-
tions. These correlations should be gradually destroyed
in order to cool atoms to the ground state of the lattice
potential.

The authors would like to thank S. Wallentowitz for
helpful discussions.
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