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Surface-plasmon vortices in nanostructured metallic films
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Light scattering by a small protrusion on a metal surface is analyzed within the framework of perturbation
theory. Upon normal incidence of linearly-polarized monochromatic wave, slight deviations of the protrusion
shape from a circularly symmetric one lead to formation of optical vortices in the near-field region due resonant
excitation of circular surface plasmons. This agrees with the results of scanning near-field optical microscopy
experiments revealing distinct spiral patterns in the in-plane near-field intensity distribution for metallized

nanostructured polymer substrates.

PACS: 74.50.4r, 74.80.Fp

In the past decade, phase singularities of optical wave
fields have attracted considerable interest in both funda-
mental and applied aspects. There are numerous tech-
niques to produce an optical field with a screw disloca-
tion (optical vortex) [1,2]. Optical vortices produced by
phase steps — refracting or reflecting surface structures
shaped into one turn of a helicoid — can be understood
in terms of the Berry phase and, in essential respects,
have analogy with Aaronov-Bohm effect. Phase singu-
larities can play a significant role in interaction of light
with solid state structures being developed for modern
nanophotonic applications.

Introducing scanning near-field optical microscopy
(SNOM) [3] as an experimental method has allowed in-
vestigating phase singularities with the sub-wavelength
resolution. Phase singularities of optical fields in
waveguide structures [4] and in the focal region of a
lens [5] have been observed by means of interferomet-
ric SNOM.

Recently, distinct spiral patterns in the in-plane near-
field fringes [6] have been detected by SNOM mea-
surements of the three-dimensional distribution of the
field intensity near nanocylinders irradiated by linearly-
polarized monochromatic light incident normally to the
axes of the nanocylinders. Constant wave laser beam
with wavelength 532 nm was additionally polarized by
the Nicole prism with the extinction ratio 5- 1075 at the
most. The nanocylinders were manufactured by double
replication from a silicon matrix and placed onto a poly-
mer substrate. Some of the nanocylinders were covered
by gold-palladium 20-30 nm-thick layer, the coverage
non-uniformity due to the shadow effect being prevented
by the coating procedure. According to Fig.1, the un-
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Fig.1. Geometric parameters and scanning electronic mi-
croscope image of a polymer nanocylinder (a); SNOM im-
age of the near-field intensity distribution near a bare poly-
mer nanocylinder (b) and that coated by a 25nm-thick
gold-palladium layer (c¢) measured at the height of 20nm
above the cylinder tops upon normal incidence of linearly-
polarized light with wavelength of 532 nm
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expected interference patterns with a spiral symmetry
were observed only for metallized samples, whereas for
bare (not metallized) ones the patterns were circular.
These experimental results can be understood on
a qualitative level by considering a model that admits
the use of a simplified perturbation-theory procedure as
compared to those developed in the context of a more
general approach [7,8]. A linearly-polarized plane wave
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with frequency w is incident from vacuum at a normal
to the boundary of a semi-infinite metal occupying the
half-space z < Z(p, ), where p, ¢, z are the cylindrical
coordinates and the function Z(p, ) describes a nearly
flat surface having a single protrusion with height L and
radius R:

Z(p,p) = Lf(p/R) [1 +v9(9)], (1)

where the function f(z) satisfies the conditions
fe<1)>0, flz>1)=0 2)

and the term <y g(p) describes deviations of the pro-
trusion shape from a circularly symmetric one. Tak-
ing these circular-symmetry shape distortions into ac-
count is of primary importance for the model, since
another factor breaking the symmetry between clock-
wise and counterclockwise directions — the presence of
a circularly-polarized component in the incident radia-
tion — is excluded by the experimental procedure. The
surface defect is assumed to be (i) slightly sloping, (ii)
small in comparison to the wave penetration depth in
the metal, and (iii) having small circular-symmetry dis-
tortions, i.e.

L<R< —S— y<1 (3)

wy/le]

with € being the dielectric constant of the metal. We
suppose that —Re £(w) > 1 and simplify the boundary-
value problem of finding the scattered electromagnetic
field outside the metal by the use of the impedance
boundary conditions at z = Z(p, ¢):

E; = C[Ht n] ) (4)

where E and H are the electric and magnetic fields at
frequency w, respectively, { = \/m is the surface im-
pedance of the metal, n is the unit vector normal to
the surface and directed inward the metal, the subscript
t denotes the value of the tangential vector component
taken at 2 = Z(p, ). In case of a perfectly flat boundary
z = 0 the approximate boundary conditions (4) yield the
following relation between the wave number ¢ and fre-
quency 2 of a surface plasmon wave propagating along
the plane z = 0 (the inverse function determines the
dispersion law):

0= TVITHC@OP, ld<1. Q

This result reproduces the exact relation ¢ =

=Q/c+/1 — ()2 to the second order in ¢ inclusive.
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It is convenient to represent the total field F at
z > Z(p,p) as a sum of four terms (here F stands for
either E or H)

F=Foe * + Fe** + FO(p,0) e ™ + F(p, 9, 2),
(6)

where ks = /g2 — k2, k = w/e, ¢ is the wavevector
modulus of the surface-plasmon wave at frequency w
(i-e. gs the root of the equation Q (gs) = w with Q(q) be-
ing the function inverse to that given by Eq. (5)). The
vector Fq is the field amplitude in the incident wave,
E=(C—1)/(1+¢) Eo, H=—(C —1)/(1+¢) Ho, F®)
and F are the functions to be found. The first two terms
in Eq. (6) correspond to a superposition of the incident
wave and that reflected from the flat boundary z = 0.
The third term in Eq. (6) stems from resonant excita-
tion of surface plasmons. The far-field contribution to
the field scattered by the protrusion is included in the
remainder term F.

We assume that at the boundary the field F is negligi-
ble against the background of the surface-plasmon term
in the following sense:
oF

|f.~ FG)

< ‘F(s)

< Kg

- (1)

2=Z(p,p) ’

z=Z(pyp)

It will be shown that the procedure of finding F(®) based
on conditions (7) is self-consistent, i.e. it guarantees
their fulfilment. The field F®)(p, ¢) can be expanded in
the Fourier series

FO(p,0) = 3 Fr(p)ei™. (8)

The four of six vector components of E,(p) and H,(p)
can be explicitly expressed from the Maxwell equa-
tions through the remaining two, E, »(p) = E,(p) and
H.u(p) = Hu(p).

At p > R the functions E,(p) and H,(p) correspond
to the normal field components in a travelling (diverg-
ing) circular surface-plasmon wave with the wave num-
ber ¢g;. Hence,

Eu(p > R) = CoH{} (asp), 9)

H,(p>R) =0, (10)

where H |(;‘)(:1:) is the Hankel function of first kind and
C, is a constant. Thus the problem reduces to find-
ing the functions E,(p) and H,(p) within the inter-

val 0 < p < R. At p = R they should be sewed
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together with the functions given by Eq. (9) to pro-
vide continuity of all field components. The function
g(p) in Eq. (1) can be expanded in the Fourier series:
9(p) = 3,0 gne™ with g_, = gr. We approximate
the exponential factors in Eq. (6) at z = Z(p, ¢) by two
lowest-order terms in their Taylor-series expansions at
z = 0: eF*Z(r¥) ~ 1+ ikZ(p,yp) and limit ourselves
to the first order in the small parameter kL. In this
way the boundary conditions (4) are mapped onto the
plane z = 0. Within the chosen accuracy we obtain that
En.—,ﬁ:l:l = Hn.—,ﬁ:l:l = 0, meanwhile En::l:l and Hn::l:l
satisfy the following set of equations (where the prime
denotes the first derivative of a function and ¢ = p/R):

n[—Hp(§) + 2vna(§) H-n(§)] +
+ 506’(6) [En(g) + 7nE—n(£)] = is(g)v (11)

i§H, (€) + &' (§) [Ha(8) + mH-n(§)] —
= 2nypa(§)E_n = —ns(§), (12)

n=+1,0<¢<1,

with v = 7%, = 7g2, a(€) = kLf(€), and s(¢) =
= k?RL(1 — ¢)Eo€f(€). The main feature of this equa-
tion set is breaking of symmetry between the terms with
n = 1 and those with n = —1. The analysis of the rel-
ative magnitude of the coefficients in Eqs. (11), (12)
shows that |E,(p < R)| > |Hn(p < R)|. Taking this
into account, we neglect H,(p < R) to provide conti-
nuity of the field components at p = R. At £ — 0 it
follows from Eqs. (11), (12) that E,(§) < & At E=1
and f(§) = 1— & Egs. (11), (12) yield the following
approximate expressions for F:

Ei1(n) ~ Ayie¥/9217°/2 4 B e=lo2in®/2 4
+kR(1=¢) (in+ 2v4n°) , (13)

where 7 = 1— € < 1 and the constants A; and By, are
to be found simultaneously with C1; entering into Eq.
(9)- We extrapolate the expressions given by Eq. (13)
to the whole interval 0 < £ < 1 with the extra boundary
condition Ey; (£ = 0) = 0. The latter, together with the
sewing conditions at £ = 1 provides equations for deter-
mining the constants Ay, By; and Cy;. As a result,
we obtain

1 (qRN

Aiq == (qs T h) Ci1, (14)
2 ’Y|92|
1/ qRW

Bj:l = = ( KL + h) C:I:la (15)
2 ’Y|gz|

kR( —1) (g”/il + Z) Ey

Cy = (16)

gsRh' sinh@%—hcosh%

where

h=HY(0R h’—l HO (R — HD (0.R
= H; ' (g:R), =3 o (gR) 5 (gsR)) .

Finally, we should check that the found solutions are
consistent with the initial assumptions given by inequal-
ities (7). Since the sum E® (p,p) e "% + E,(p, p,2)
from Eq. (6) satisfies the three-dimensional Helmholtz
equation with the wavevector modulus w/¢, the function

E,(p, ¢, z), within the chosen accuracy, has the integral
form

E,(r) = / G(lr —x')) (Ap, o + @) ED (x) &,

p'<R
2! >Z(p,p)
(17)
where
exp(ikr) 10 i} 1 62
G = A = - — e R
(r) drr T TP% pop pap +p26g02

and E® (r) = E® (p,p) e~ "=*. From Eq. (17) the fol-
lowing estimations can be obtained

z

z=Z(p:¢) | _, 2
O (kR)” < 1, (18)
OF,
9z 2=Z(p,p) 2
e (kR <1, (19)
ks F;

which leads to inequalities (7).

Analyzing the spatial behavior of the non-vanishing
time-averaged characteristics of the scattered field, we
conclude that for the found solution a first-order vor-
tex occurs in the in-plane distribution of the tangen-
tial component of the time-averaged Poynting vector
S = éRe [E H*] taken at the metal boundary z =

= Z(p, ). The projection of S onto the plane z = 0 de-
scribes the energy flow in the travelling surface-plasmon
wave resonantly excited by the incident light due to the
presence of the surface defect. This component expo-
nentially decays as |z| grows and it is lacking in the
absence of the surface plasmon, e.g., at a dielectric sub-
strate with Ree > 0. For our model we obtain:
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B : (20)

> ‘S}f)

s ce fs? "
Sb) — TRe (Eﬁs)(p, ©) EO) o

x e~ "%Re {H{l) (qu)(SiIl(p + 'YIm 92 eiﬁp)} , (21)

where the z-axis is chosen to be parallel to the electric
field E¢ in the incident plane wave. Figure 2 shows the
first-order vortex occurring in the in-plane spatial de-
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Fig.2. Density plot of the tangential Poynting vector com-
ponent S,(f) at the metal surface as a function of the di-
mensionless radius ¢gsp and polar angle ¢ (v = 0.5, g2 = )

pendence of S (p, 0,2 = Z(p,p)) at v # 0, i.e. when
the defect shape deviates from a circularly symmetric
one.
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To summarize, the scattering of linearly polarized
monochromatic light by an individual sub-wavelength
protrusion in thin metal film has been studied within
the framework of perturbation theory. It is shown that
even at normal incidence small deviations from circular
symmetry of the protrusion shape can result in opti-
cal vortex formation in the near-field region if resonant
circular surface-plasmon waves are excited. This co-
incides with the fact that the in-plane near-field inten-
sity distribution measured by scanning near-field opti-
cal microscopy has distinct spiral patterns for metallized
nanostructured polymer substrates contrary to circu-
lar patterns observed for unmetallized substrates where
surface-plasmon waves are lacking.
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