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A model of laminated wave turbulence
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A model of laminated wave turbulence is presented. This model consists of two co-existing layers — one
with continuous waves’ spectra, covered by KAM theory and Kolmogorov-like power spectra, and one with
discrete waves’ spectra, covered by discrete classes of waves and Clipping method. Some known laboratory
experiments and numerical simulations are explained in the frame of this model.

PACS: 47.10.—g, 47.27.—i

1. Continuous wave spectra. In [1] Kolmogorov
presented energy spectrum of turbulence describing the
distribution of the energy among turbulence vortices as
function of vortex size and thus founded the field of
mathematical analysis of turbulence. Kolmogorov re-
garded some inertial range of wave numbers, between
viscosity and dissipation, and suggested that at this
range, turbulence is (1) locally homogeneous (no depen-
dence on position) and (2) locally isotropic (no depen-
dence on direction) which can be summarized as fol-
lows: probability distribution for the relative velocities
of two particles in the fluid only depends on the dis-
tance between particles. Using these suggestions and
dimensional analysis, Kolmogorov deduced that energy
distribution, called now Kolmogorov “s spectrum, is pro-
portional to k~%/3 for wave numbers k. Results of nu-
merical simulations and real experiments carried out to
prove this theory are somewhat contradictious. On the
one hand, probably the most spectacular example of the
validity of Kolmogorov’s spectra is provided in [3] where
measurements in tidal currents near Seymour Narrows
north of Campbell River on Vancouver Island were de-
scribed and —5/3 spectra appeared at the range of 10*
(energy dissipation at a scale of millimeters and energy
input — at 100m). On the other hand, Kolmogorov s
spectra have been obtained under the assumptions op-
posite to Kolmogorov’s [4] so that exponent —5/3 cor-
responds to both direct and inverse cascades.

With a hope to diminish established unclearness of
Kolmogorov’s theory in a more simple setting, theory of
wave (or weak) turbulence (WT) in the systems with
continuous wave spectra has been developed. The prob-
lem is regarded in the very general form
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L(¢) = —eN(¥), (1)

where L and N are linear and nonlinear operators con-
sequently, 0 < £ < 1 is a parameter of nonlinearity and
linear part possesses wave-like solutions of the form

¥(x) = A(k, z) expi(kx — w(k)t). (2)

Choice of ¢ is defined by specifics of the physical wave
system under the study. For instance, for spherical plan-
etary waves ¢ is usually chosen as the ratio of the parti-
cle velocity to the phase velocity while for water waves
usually € = alk| , where a is amplitude of a wave and
€ characterizes in this case the steepness of the waves.
For small enough ¢, solutions of Eq.(1) are described at
the slow-time scales 71 = t/e, To = t/e?, Tz = t/e3,

. , etc. by resonantly interacting waves only, i.e. by
the waves with wave-vectors satisfying to resonant con-
ditions (for nonlinearity of order n):

w(kl) + w(kz) + ..+ w(an) = 0, (31)

ki +kod..tkyyy =0 (3.2)

so that quadratic nonlinearity corresponds to 3-waves
interactions, cubic — to 4-waves interactions, etc. Ob-
viously, in every physical problem the resonances have
some nonzero width, i.e. Eq.(3.1) takes form

w(ki) £ w(ks) £ ... £ w(kni1) = A (4)

with a small but nonzero discrepancy 0 < A <« 1. Tak-
ing this into account, nonlinear part of (1) can be rewrit-
ten as
~ Vid(ki £ko + ... £ ki) (5)
z(‘U(kl) + w(kg) +..+ w(kz) ’

where § is a delta-function and each term of this sum
with nonzero vertex coefficient V; corresponds to a spe-
cific slow-time scale of wave interactions. The repre-
sentation (5) is used then for construction of a wave
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kinetic equation, with corresponding vertex coefficients
and delta-functions in the under-integral expression.

From mathematical point of view, it is important to
establish the finiteness of nonlinearity given by (5) in
the case when A — 0 because representation (5) be-
comes meaningless if A = 0. This problem — so-called
“problem of small denominators” — was solved by KAM
theory ([13, 12, 15]) in the following way. For small
enough A and sufficiently irrational dispersion func-
tion w, these wave systems contain an infinite set of
invariant tori which carry quasi-periodic motions which
in phase space are confined to the tori. Main result of
KAM theory is therefore a decomposition of action into
disjoint invariant sets, and though it contradicts ergod-
icity but not very substantially as the size of the system
tends to infinity [2]. In particularly, random phase ap-
proximation can be assumed and kinetic equations and
Kolmogorov-like power spectra k7, v < 0, give then ap-
propriate description of these wave systems at the corre-
sponding time scales. It means that some special set of
points in spectral space, corresponding to the A-vicinity
of exact resonances, has been excluded from considera-
tion in order to obtain wave kinetic equation. We give
detailed description of this subset of spectral space in
the section 4 of this paper.

2. Discrete wave spectra. There exist a lot of
wave phenomena which are due to discreteness of the
wave spectra (corresponds to zero- or periodic boundary
conditions) and can not be explained in terms of kinetic
equations and power energy spectra. To describe these
phenomena, WT in the systems with discrete spectra
has been developed [10, 11]. It turned out that dis-
crete systems possess some qualitatively new properties:
(a) all resonantly interacting waves are divided into dis-
joint classes, there is no energy flow between different
these classes; (b) major part of the waves do not in-
teract; (c) all interactions of a specific wave are con-
fined to some finite domain; (d) number of interacting
waves depends on the form of boundary conditions, for
the great number of boundary conditions interactions
are not possible; (e) all properties (a)-(d) keep true for
approximate interactions, i.e. for some small enough dis-
crepancy 0 < A < 1. This fact gave a rise to Clipping
method [9] which allows ”to clip out” all non-interacting
waves from the whole spectra and study only those which
do interact, exactly or approximately. Approximate res-
onances are understood on a discrete lattice, i.e. wave
vectors of approximately interacting waves are also in-
tegers. The energetic behavior of these systems is de-
scribed then independently (at each slow-time scale T})
by a few small systems of ordinary differential equations
(SODE) on slowly-changing amplitudes of resonantly in-

teracting waves, i.e. amplitude of linear wave (2) is a
function of some T; depending on the form on nonlin-
earity N. For instance, for 3-waves interactions major
part of these SODE consist of three equations on three
(real-valued) amplitudes and can be solved explicitly in
terms of elliptic functions on 73. To compare with WT
of the systems with continuous spectra, SODE are to
be used instead of kinetic equation and their coupling
coefficients — instead of power-law spectra. Notice that
though kinetic description does not apply for discrete
systems, some of these results are in a sense similar to
those of KAM theory, for instance, Theorem on the par-
tition [7] can be regarded as an analog of KAM-Theorem
for discrete systems.

3. Transition from discrete to continuous
spectra. Now, the standard qualitative model of the
WT can be presented as follows: short waves are de-
scribed by Kolmogorov’s energy spectra and kinetic
equations, long waves are described by Clipping method
and dynamic equations, and somewhere in between a
Ytransition” interval exists that has its own specifics and
should be described separately.

We would like to demonstrate some contradictiveness
of this qualitative model and begin with two remarks.
(1) WT of discrete waves systems has been developed
for arbitrary wave numbers which means that transition
from finite to infinite domain can be constructed not
only in some finite “transition” interval but at the whole
infinite range of wave numbers. (2) Transition from dis-
crete to continuous spectrum is often regarded in some-
what over-simplified way: if say, real-valued wave vec-
tors k = (kg, ky) have dispersion function w(k,, k,) with
kz,ky € R, then the same function of integer variables,
w(m,n) with m,n € Z, describes corresponding discrete
waves. In general, it is not true. We demonstrate it
taking barotropic vorticity equation (BVE), also known
as Obukhov-Charney-Hasegawa-Mima equation, as our
main example motivated by its wide applicability for
describing a great number of physically important phe-
nomena in astrophysics, geophysics and plasma physics.

BVE on a sphere has form

OAY oY

W+25+J(¢,A¢)=O (6)

with linear waves of the form
Ysphere = APJ (sin ¢) exp i[mA + Wspheret]- (7

Here 1) is the stream-function; variables ¢, ¢ and A phys-
ically mean the time, the latitude (—7/2 < ¢ < m/2) and
the longitude (0 < A < 2m) respectively; P™(z) is the
associated Legendre function of degree n and order m.
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The same equation taken on infinite G-plane has linear
waves of the form

"/)plane = Aexpi(kzw + kyy + wplanet)a
which means that
Wsphere = m/[n(n+1)] and Wplane = kz/(1 +k§ +k121)a

here constant multipliers are omitted because they dis-
appear due to homogeneous form of Eq.(3.1). It is easy
to see that no wave vectors k = (m,n) : m,n € Z satisfy
Eq.(3.1) with wsphere and with wplane simultaneously. It
means that discrete waves do not have images on infinite
plane when such a “naive” transition is regarded.

More intrinsic construction of the transition from
spherical to plane planetary waves [6] can be derived
in following way. Regarding m ~ n > 1 and using as-
ymptotic approximation for Legendre functions, one can
“convert” (not always but in a bounded latitudinal belt
with the width ~ n~!) one spherical wave into a linear
combination of two plane waves

Aexpi(k(‘PO)zw =+ k(‘PO)yy + wplanet)a

where local wave numbers k(o)q, k(¢0)y € R are func-
tions of the initial spherical wave number m,n and of
the so-called interaction latitude (yg:

2
cos” po =

_m%(n§+n§—n%)—}-m%(n%—i—nﬁ—ng)ﬁ-mg(n%—}-ng—ng))

a nin3+nind+nini—(ni + nj+nj)/4
If interaction latitude exists, 0 < cos? g < 1, plane im-
ages of spherical waves interact as in classical 3-plane
approximation. In particularly, this means that (1) tran-
sition from a spherical domain to an infinite plane is
transition to a one-parametric family of infinite planes,
and (2) such a transition is not always possible. A very
important fact is that plane wave system keeps memory
about spherical interactions: coupling coefficient of the
plane images of spherical waves is ~ k%/2 and ~ k7/6
otherwise and k = |k|.

The same reasoning allows to construct a transition
from a square domain (dispersion function being then
Wsquare = 1/v/m? +n2) to the infinite g-plane where
difference in magnitudes of coupling coeflicients is even
more substantial: ~ k2 for plane images of the waves
from square domain and ~ k otherwise [8]. These re-
sults hold for discrete approximate interactions in fol-
lowing way: long-wave part of spectrum is dominated
by a few resonantly interacting waves with huge am-
plitudes while short-wave part of the spectrum consists
of many approximately interacting waves with substan-
tially smaller amplitudes. But in any case, coupling co-
efficients are of order k7 with v > 0 which apparently
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contradicts to the existence of Kolmogorov-like power
spectra k” with v < 0 in the region of short waves.

4. Laminated WT. In order to resolve this appar-
ent contradiction we have go back to the very base of
the KAM theory. Its main results are based on the fa-
mous Thue theorem, giving low estimate for the distance
between any algebraic number a of degree n > 2 and a
rational number p/q € Q:

()

gA+L+n/2 Ve >0

loe — 1—)| >
q
where ¢(a) is a constant depending on « and A can be
arbitrary small. This fact allows to construct KAM tori,
with a being a ratio of frequencies of interacting waves,
and KAM theorem states then that almost all tori are
preserved. “Almost” means in particular that tori with
rationally related frequencies (corresponds to o being
an algebraic number of degree n = 1) are explicitly ex-
cluded from consideration. Since the union of invariant
tori has positive Liouville measure and Q has measure
0, this exclusion is supposed to be not very important.
Coming back to the example of spherical planetary
wayves, one can see immediately that the ratio of the fre-
quencies for resonantly interacting waves in this case is
a rational number, both for exact and approximate in-
teractions. Therefore, these waves are not described by
KAM theory. Obviously, the same keeps true for an ar-
bitrary wave system with rational dispersion function w.
Case of planetary waves in a square domain is a bit more
complicated. It is proven [11] that exact resonances in
this case are described by the wave vectors k; = (m;, n;)
satisfying the (necessary) condition

ki:ai\/a, a; €N Vi=1,2,3,

with the same square-free ¢. This fact allows to con-
struct disjoint classes of resonantly interacting waves
and ¢ is called index of the class. Obviously, for the
waves belonging to the same class, the ratio of their fre-
quencies is a rational number, w;/w; € Q, Vi,j and
these waves are excluded from KAM theory. Waves, in-
teracting approximately, may have different indices (not
necessarily) but the ratio of frequencies w;/w; is then
an algebraic number of degree < 2 due to the form of
dispersion function and, therefore, these waves are also
excluded from the KAM theory. Similar results can be
proven for exact resonances in many wave systems, for
instance, for an arbitrary wave system in which disper-
sion function is a polynomial of finite degree on k with
at least one non-zero coefficient in front of an odd degree
of k.

Let us summarize the results obtained. Continuous
WT (CWT) describes energetic behavior of a wave sys-
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tem for the short-waves’ part of spectrum excluding
nodes of rational lattice thus leaving some gaps in the
spectrum which are supposed to be not important in
short-waves’ part. Discrete WT (DWT) fills these gaps
all over the spectrum. In fact we have two layers of tur-
bulence - CWT (layer I) and DWT (layer IT), which are
mutually complementary and should be regarded simul-
taneously.

Layer I provides KAM tori and stochastic enough
turbulence in short-waves range with Kolmogorov s
spectra in the inertial interval; direct or inverse energy
cascades are possible; wave-numbers range of energy
pumping influences the results.

Layer II provides a countable number of waves with
big amplitudes all over the wave spectrum; some of
the waves do not change their energies (non-interacting
waves) and others do exchange energy within small inde-
pendent groups; there is no energy cascade at this layer;
results do not depend on the wave-numbers range of en-
ergy pumping.

The co-existence of these two layers means in partic-
ularly that in the waves’ range, classically described by
Kolmogorov-like spectra, there exist also a small group
of waves from layer IT with substantially bigger ener-
gies than their “neighbors” from layer I, and this small
group generates appearance of some structures. We give
here a few examples of known phenomena which can be
explained in the same frame of the model of laminated
turbulence.

(1) Very clear example of the co-existence of these
two layers is given in [16] where turbulence of capillary
waves was studied in the frame of simplified dynamical
equations for the potential flow of an ideal incompress-
ible fluid. A stationary regime of so-called “frozen tur-
bulence” had been discovered: in small wave-numbers
region wave spectrum consists of “several dozens of
excited low-number harmonics” which construct “ring
structures in the spectrum of surface elevation”. The
appearance of these structures does not depend on the
damping and pumping, and in all computations “the
Kolmogorov “s spectrum coexists with the spectrum of
another, “frozen” type, concentrated in the region of
low wave-numbers and fastly decreasing to large wave-
numbers. If the level of nonlinearity is low enough,
such ”frozen” regimes are dominant” ([16]). Obviously,
these ring structures are due to non-interacting waves
of layer IT and similar structures were also observed in
laboratory experiments and identified as such [5]. No-
tice that as there exists no exact three-wave interactions
among capillary waves with w? = k® [11], we observe
in regime of frozen turbulence of capillary waves only
discrete waves with constant amplitudes.

(2) Similar experiments/simulations with, say, four-
waves interactions among gravity waves, w? = k,
will demonstrate that frozen turbulence partly “thaws
out” because also changes in the amplitudes of reso-
nantly interacting discrete waves should be observed (cf.
"bursty” spectrum in [14]).

(3) Mesoscopic turbulence [17] (corresponds to
“transition” interval mentioned above) discovered in
numerical experiments on modelling of turbulence of
gravity waves on the surface of deep ideal incom-
pressible fluid gives another example of manifestation
of laminated turbulence. It was established that not
all waves “have the same rights” and the existence
of so-called ”elite society of harmonics” has been
demonstrated; their number amounts to only 6% of
the total number of harmonics being 10* but they play
the most active role in mesoscopic turbulence. These
elite harmonics correspond to exact and approximate
resonances of the discrete waves (layer IT). The number
of these harmonics depends, of course, on the specific
wave system. For instance computations with spher-
ical planetary waves in the domain of wave numbers
0 < m,n < 1000 (which is far beyond the region
of applicability of BVE) shows that total number of
harmonics taking part in exact resonant interactions
is 22683, i.e. slightly more than 2%. Consideration of
approximate interactions of the layer II increases this
amount but not substantially.

(4) Zonal extended vertices (flows in latitudinal di-
rection) in the atmosphere can possibly be explained in
terms of plane images of spherical waves with coupling
coefficient n3/2.

At the end of this letter we would like to make one
important remark. To describe the short waves of layer
IT it is necessary to develop fast algorithms of solving
Diophantine equations in very big integers (of the order
1012 and more). We consider it possible basing on the
existence of disjoint classes of waves participating in a
single solution. This is our current object of interest.
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and whose numerous results in the theory of wave turbu-
lence gave us necessary insights while creating a model
of laminated turbulence. Author is also very much
obliged to anonymous referees for their valuable remarks
and suggestions.

1. A.N. Kolmogorov, Dokl. Akad. Nauk SSSR 30, 301
(1941). Reprinted in 1991: Proc. R. Soc. Lond. A 434,
9 (1991).

2. V.I. Arnold, Soviet Mathematics 5(3), 581 (1964).

Nucema B MATP® Tom 83 BeIM.7—-8 2006



A model of laminated wave turbulence

345

. H.L. Grant, R.W. Stuart, and A. Moilliet, J. Fluid.
Mach. 12, 241 (1961).

4. A. Chorin, Vorticity and Turbulence, Springer, 1994.

These experiments have been carried out by J.Hammack
and his colloborators, and we discussed them during my
visit to PennState University in 1995. I do not know
where these results are published.

E. A. Kartashova, L. 1. Pieterbarg, and G. M. Reznik, J.
Oceanology 29, 405 (1990).

7. E. A. Kartashova, Physica D 46, 43 (1990).

10

IIucema B MRITP® Tom 83 BRIN.7-8

E.A. Kartashova, G.M. Reznik. ”Interactions between

Rossby waves in bounded regions.” J. Oceanology, 31,
385 (1992).

. E. A. Kartashova, J. Theor. Math. Phys. 99, 675 (1994).
. E.A. Kartashova, J. Phys. Rev. Letters 72, 2013 (1994).

2006

11.

12.

13.

14.

15.

16.

17.

E. A. Kartashova, In: V.E. Zakharov (Ed.), Nonlinear
Waves and Weak Turbulence, Series: Advances in the
Mathematical Sciences, AMS, 1998, pp. 95-129.

V.I. Arnold. Russian Math. Surveys 18, 9 (1963).
A.N. Kolmogorov, Dokl. Akad. Nauk SSSR 98, 527
(1954). English translation in: Lecture notes in Physics
93, Springer, 1979.

Y.V. Lvov, S. Nazarenko, and B. Pokorni, Eprint
arXiv:math-ph /0507054 v.3 (2005).

J. Moser, Nachr. Akad. Wiss. Go6tt., Math. Phys. KI. 1
(1962).

A.N. Pushkarev and V. E. Zakharov, Physica D 135, 98
(2000).

V.E. Zakharov, A.O. Korotkevich, A.N. Pushkarev,
and A.I Dyachenko, JETP Letters 82, 487 (2005).



