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Two dimensional electron gas in perpendicular magnetic field, driven by microwave ac- field is studied.
The magneto-conductivity and the diffusion constant are calculated in the microscopic model. In the driven
state the Einstein relation is violated. Instability of the Coulomb screening and a divergence of the effective
donor electrostatic field due to the negative Ryzhii currents is predicted. This phenomenon results in the

zero-resistance states observed experimentally.

PACS: 73.21.—b, 73.40.—c, 78.67.—n

Electron systems interacting with microwaves can be
driven into highly non-equilibrium state with unusual
properties. For example, two dimensional electrons
(2DEG) in GaAs heterostructures in weak perpendicular
magnetic field show microwave induced resistance oscil-
lations which in the limit of extreme power are capped by
zero resistance states [1, 2]. Ryzhii has predicted [3] that
in 2DEG with weak disorder and electron-phonon inter-
action, driven by microwaves an electric photo current
will flow along or against the applied weak dc-electric
field (depending on the ratio of the microwave and cy-
clotron frequencies w and wg) in addition to the usual
current. Recent works [4, 5] have clarified mechanisms
of the Ryzhii current and the microwave induced resis-
tance oscillations in disordered systems. At high mi-
crowave intensity the negative Ryzhii current overcomes
the usual positive current resulting in the absolute neg-
ative conductivity. This may lead to the current domain
instability and these domains could arrange themselves
into a state with net zero resistance [6].

Zero resistance states may have different origins. For
slow driving w <« wpg a suppressed resistance [7] in a
wide range of magnetic field could be a manifestation
of the ’driven’ degeneracy of electron states [8]. Fast
driving w > wg smoothes the disorder potential and the
ideal state of electrons can emerge with zero resistance
(not reported yet in experiments to my knowledge), sim-
ilar to the induced transparency in optics. This Letter
concerns with the intermediate frequencies: w ~ wyg,
where multiple zero and high resistance states specific
only for 2DEG in magnetic field appear due to the Ryzhii
phenomenon.

In high mobility heterostructures a donor electro-
static potential characterized by the spacer length d is
present due to Si-doped layer. In this Letter the ki-
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netic coefficients of 2DEG — the conductivity ¢(FE) and
the diffusion constant D(E) — are calculated for arbi-
trary intensity of the microwaves E in the microscopic
model with the superposition of the donor disorder and
a short range disorder in the region of magnetic field:
lg € 2d € R., where lg and R, are the magnetic
length and the cyclotron radius. In this region of mag-
netic field the donor potentials before and after the scat-
tering off the short range disorder are uncorrelated. The
conductivity splits into the diffusion and Ryzhii parts:
o(E) = op(E) + or(E), with the former being re-
lated to the diffusion constant by the Einstein relation:
op(E) = €?v(er)D(E) where v(er) is the density of
states on the Fermi level. The Einstein relation is vi-
olated in the driven state. The current induced by the
electron relaxation due to phonon emission can be ne-
glected [9].

If the long range disorder potential (with lengths ex-
ceeding R.) is present in the stationary 2DEG driven
by microwaves then Ryzhii currents will be locally in-
duced even in the absence of the probe dc-voltage.
Electrons will move away from the equilibrium density
distribution, modifying the Coulomb interaction. For
kwg < w < (k +1/2)wg, where k is an integer, the
Ryzhii current is negative and the electron density n(r)
becomes more even over the 2D plane as the intensity of
microwaves E is increasing. Therefore, the screening of
an external potential by electrons is reduced. The rela-
tionship between the external uo(r) and the screened
u(r) potentials is linear: w(q) = wo(q)/e(q), where
e(q) is the dielectric permeability of 2DEG, provided
|u(r)|, |uo(r)] < er. One of the central results of this

Letter is that:
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Indeed, in the long range limit gR. < 1 the electron
transitions amount to a continuous current. The cur-
rent density is the linear response with respect to two
distinct sources: weak electric field and weak gradient
of the density. In magnetic field, locally, the current due
to Vu has two orthogonal components: the Hall drift
current along the contour of constant potential u(r) and
the longitudinal current along the local electric field Vu.
The diffusion current is dissipative unlike the drift cur-
rent and there is no kinetic force to sustain the diffusion
along the contour of constant potential. Therefore, the
density along this contour is constant [10] and is a func-
tion of the local potential only, linear in high Landau
level: én(r) = —vu(r). Unlike Vu, Vn does not induce
the Hall current and does not change the wave function
of the drifting states. Therefore the longitudinal current
reads:

eji(r) = o(E)Vu(r) + € D(E)Vn(r), (2)

In the stationary state of electron system j;(r) = 0. The
source of the electrostatic potential u(r) (hereafter it
means the electrostatic energy) is either donors or elec-
trons:

u(q) = uo(q) + (2m€*/|q|) n(q). 3)

Then the dielectric permeability Eq.(1) follows from
Eqgs.(2), (3). Provided the Ryzhii current is negative
and and at high microwave intensity we find from Eq.(1)
that €(q) < 0. Usually, zeroes of £(q) correspond to col-
lective modes of electron system. In this Letter zeroes of
€(q) is shown to generate a divergent long range electric
field on the percolating level that in turn results in zero
resistance states.

In the Fermi liquid the transport is described in
terms of non-interacting quasiparticles. The Hamil-
tonian of driven electrons in a disorder potential u(r)
reads:

53 o (095 + AG) + SAD) +ulry)
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where m is the electron mass, A(r) = —Hye, and A(t)
are the vector potentials of the perpendicular magnetic
field H in the Landau gauge and the microwave ac-
field: cE(t) = —dA/dt (at high intensities the Bose
factors of microwave modes are large and A(t) is a
classical field). We use the magnetic units: A = 1,
e =¢, H=1, wg = 1/m. In Landau level with the
large number N, there are two distinct lengths: the cy-
clotron radius R, = v/2Nly and the magnetic length

lg =+/ch/eH = 1.

Disorder electrostatic potential in the quantum well
is created by remote ionized Si donors with the charge
e and uncorrelated positions in a narrow d-doped layer
parallel to the quantum well and separated by the clean
spacer of width d assumed /g < 2d < R.. Donor areal
density is equal to the density of electrons n. The donor
external potential uo(r) is Gaussian with the correlation
function:

2me?

2
“—— ) nexp(—2|q|d),
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(5)

in the momentum range ¢ < +/n. Electrons screen the
external potential ug(r) near the 2DEG plane accord-
ing to Eq.(3). In high Landau levels the linear response
occurs even in the limit of non-overlapping Landau lev-
els. The correlation function of electron density per-
turbed by the donors is: (n(q)n(—q)) = nexp (—2|q|d),
with variation: ((6n)?) = n/2n(2d)?. For typical densi-
ties in GaAs heterostructures the screening is complete
e(g) > 1:

S(a) = (u(q)u(-q)) = nexp (-2|ald) /v*(er). (6)

We expand the electron Green’s functions into a
series over the potential u(r), using the diagrammatic
method and average it with the disorder Gaussian prob-
ability distribution using Eq.(6). The diagrams consist
of electron and impurity lines. The vertex describes an
electron scattering off the potential u(q) from the state
(N, p) into the state (N',p'), where p is the degeneracy
index inside Landau level. The vertex:

V(Np7 NIpI1 q) = VNN’ (q)U(pa q)ép' ,P+ay» (7)

is the product of the magnetic phase factor, universal
for all Landau levels: U(p,q) = exp(ig.(p + g4/2)), and
the reduced vertex, expressed in terms of the Laguerre
polynome:

Vo= n_” £1/2 dy +iq, In=n lL\n—n'\ 4_2 €7§
nn n! \/Q min(nn') \ 9 ’
(8)

So(a) = (uo(@)uo(—a)) = (

where the sign + corresponds to n > n' and n < n'.
In the static potential the electron propagator is either
retarded or advanced. We include the two vertices into
the impurity line that connects them and retain only the
transitions within the same Landau level N:
2
u= [s@Van@® 55 O

A realistic model of magneto-transport in high mo-
bility GaAs heterostructures may require an additional
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long range disorder with the correlation function being
non-zero in the region gR, <« 1. The corresponding
‘extra’ long range impurity line ug generates no mag-
netic phase unlike the donor line u. Another impor-
tant additional disorder is the short range potential w(r)
that induces the diffusion. It may originate in the bar-
rier layer Ga; ,Al;As. Al atoms are distributed ran-
domly and the local energy barrier fluctuates. Accord-
ingly w(r) is Gaussian with the correlation function:
Sw = {(w(q@)w(—q)) = 1/27v(ep)7y. Using Eq.(9) we
find the short range impurity line: w = wgy /277, and
we assume w <K u.

Quantum states of an electron driven by uniform
microwave ac-field are explicitly time depend. There
exists a unitary transformation to the oscillating ref-
erence frame, where the wave function of electron be-
come time independent whereas the disorder potential
becomes time dependent [5, 8]. In this frame the driven
correlation function of the short range potential reads:

Sw(t, t,; q) = Sy eiq (R(t) - R(tl))a (10)

where R(t) = (X (¢),Y(t)) is the classical elliptic trajec-
tory of charged particle in the crossed magnetic field and
the microwave electric ac-field E(t) = E cos(wt) with the
frequency w and polarized linearly along the z axis:

Elg wp cos(wt)

O =78 -y (1)
Y(t) = Elg w sin(wt)

V2N w(w? — w})’

where the amplitude of the ac-field is expressed as the
energy: £ = eER.. For the long range disorder we ne-
glect the time-dependent phase in Eq.(10) due to small
q. For the short range disorder this phase is essential.
We take integral in Eq.(9) with respect to q using the
driven correlation function Eqs.(10), (11) and find the
driven impurity line in the limit of large N:

w(t, ') = wJ? (2R (w(t; tl)) sin “’(t; tl)) . (12)

where J,,(2) is the Bessel function and the relative ra-
dius of the elliptic trajectory is

£ 2
R(®) = %i%{\/cosz o+ L:)—I; sin® (13)

The calculation of the conductivity of 2DEG uses the
Keldysh method [12] and is similar to that of Ref.[8].
For a given realization of the long-range potential, the
anisotropic longitudinal conductivity is given by the
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current-current diagrams with exactly one short range
impurity line: 0,5(Q) £ 04y (Q) = 20.(Q), where

zeerwZ/;i—;{ gm }ImG(e) x

X o) = f(é(-; mw — Q) ImG(e + mw — Q), (14)

where index + corresponds to P, and index — corre-
sponds to @,,- The dc- conductivity is found in the
limit Q@ = 0:

o+(Q) =

Qm :/cos(mﬂ) [Jo(z)J2(z) + I3 ()] %’
P, = /cos(m0) [J3(z) = J7 (2)] %’ (15)

where z = 25sin(6/2)R($). Next we average Eq.(14)
over the long-range donor potential u. In the limit
lg < 2d € R, each Green’s function in Eq.(14) is av-
eraged separately. The de-conductivity is split into the
two parts: 04 = o + off, where

2
D 2¢“Nw
O'i = — X

™
Pr,
x ; / ;l_; { o }ImG(e+mw)Z—J:ImG(e) (16)
is the diffusion part and the Ryzhii part reads:
2e2N de | P, d
R m
o - wzm:/%{ O }glmG(e)x

x (f(e + mw) — f(€)) ImG (e + mw) (17

Finally we average Eq.(16), (17) over the ’extra’ long
range potential ug. For random contour of the constant
potential the local axes of the conductivity tensor rotate
with respect to the ac-field polarization axis. Therefore,
the macroscopic conductivity is given by o indepen-
dent of the microwave polarization in agreement with
Ref.[13]. We assume that phonon relaxation will estab-
lish the Fermi-Dirac distribution function f(e). An ex-
ample of our resistivity py = 04 /03, is given in Fig.1
and it agrees well with the experiments [1, 2]. Parame-
ter up determines the onset of the Shubnikov-de-Haas
oscillations whereas u is the purity parameter. The con-
ductivity Eq.(16), (17) allows for the absolute negative
conductivity o4 < 0 at large microwave field €.

We use the Keldysh method [12] to calculate the local
diffusion constant. In the non-equilibrium state of elec-
trons driven by microwaves with a long-range gradient of
the electron density, the current density, averaged over
times shorter then the density relaxation time, reads:

j(r,t) = jG"'_ (rt;rt). (18)
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Fig.1. Positive part of the diagonal resistivity (p+,
Egs. (16), (17)) with and without microwaves. z-axis
is magnetic field in kGauss, n = 3 - 10" em™?, w =
27 - 57GHz, E = 1.6 V/cm. Disorder model parameters
are: up = 2K?, v = wy - 0.03K, and w determines the

scale of the resistivity y-axis

Diffusion is related to the short range disorder scatter-
ing, therefore, the Green'’s function in Eq.(18) is ex-
panded into the diagrams with one short range impu-
rity line. One of the Green’s functions in each di-
agram represents a variation of the occupation num-
ber distribution §f(e), due to the density gradient,:
Gt~ = 6fGA — GBS f, whereas all Green’s functions
to the left to §GT— are retarded and all Green’s func-
tions to the right to G*~ are advanced. In weakly non-
equilibrium Fermi liquid § f (¢) is localized in the energy
domain in the vicinity of the Fermi level. Therefore, we
use ansatz:

df(e,r) = —@%nq exp(iqr) (19)

It has the quasi-classical property: [§f(p) d*p/(2m)* =
= ngexp(iqr). In the perpendicular magnetic field we
expand exp(iqr) = 1 +iml%q x j+ ... in series of small
q, neglecting the magnetic translation operator that does
not contribute to the current. In the result we get a di-
agram shown in Fig.2. It is proportional to qng and,
therefore, gives the linear response diffusion equation:

Fig.2. Diagram for the average current in the left vertex. It
is a linear response to the inhomogeneous electron density
with the density gradient being indicated by the arrow

J = DVn. The dashed short range impurity line in the
state driven by microwaves is given by Egs.(9), (10).
The sum of all such diagrams gives the diffusion con-
stant:

sty S 0 )
v(er) - 27 | Qm(w)
daf

x ImG () e ImG(e + mw). (20)
Because ImG(e) is positively defined function — it is the
density of states - and df /de < 0, the diffusion constant
is positive D,, > 0. The diffusion constant and the dif-
fusion conductivity Eq.(16) are related by the Einstein
formula: 02 = e?v(ep)Dy,- The Einstein relation be-
tween the total conductivity and the diffusion constant
is violated in the systems driven by microwaves due to
the Ryzhii conductivity Eq.(17).

When the intensity of the microwaves, in magnetic
fields such that kwy < w < (k + 1/2)wg, is increasing
the electron density variation, originally due to the Si
donor potential, become more and more even because
the negative Ryzhii current moves electrons from the
places of lower electrostatic energy (higher density) into
the places of higher electrostatic energy (lower density).
The correlation function of the donor potential trans-
forms from the completely screened Eq.(6) to the un-
screened one Eq.(5):

212
S(q,E) = (2me’)” n ~. (21)
(¢ + 2me’vp[l — |or|/oD])

The harmonic of the potential u(q) with ¢ = 0 will di-
verge at the critical microwave field E.., determined from
the condition: |0f(E,)| = oP(E.). At even higher mi-
crowave intensities £ > F, the harmonics of the poten-
tial, with momenta in the shell |q.| = a(E — E.), are
divergent. Therefore, the local electric field will become
infinite. The additional current induced by the electron
relaxation due to phonons will perhaps prevent the local
electric field to grow to infinity. g. can be considered as
the order parameter of the emergent random long range
potential with large gradients.

In this situation the diffusion is dominated by elec-
trons drifting in very long range gR. < 1 random po-
tential with very large local electric fields. The macro-
scopic dc- conductivity is inversely proportional to the
magnitude of the local electric field in the vicinity of the
percolating contour. Indeed, the local electric field lifts
the degeneracy of the Landau level and impart a velocity
and a linear dispersion to the electron: e(p) = I4VuXxp.
Therefore the density of states is inversely proportional
to the electric field: v(er) ~ 1/|Vu|. The scattering rate
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is proportional to the correlation function of the short
range potential: 1/7 = 27v(ep)w. In the magnetic field
D ~ 1/7 due to the dominant Lorentz force. Therefore,
the conductivity as well as the resistivity is almost zero
and the zero-resistance state emerges.

The Hall conductivity in 2DEG with the constant
electron density n and in the presence of the long range
potential is determined by the drift of those electrons
that are close to the percolating level in the direction
perpendicular to the applied Hall electric field. It is
given by o,, = ecn/H. Indeed, the total Hall voltage
along the cross section of the sample can be written as
eVyg = >, €i, where i counts percolating level crossings
and €; = [;|Vu|; is the potential drop across the bunch
of infinite size contours of width /; (non-zero due to the
applied Hall voltage). The Hall current is Iy = >, I;,
where I; = nl;jvg, the drift velocity v¢ = ¢Vu/H and
n does not depend on crossing i. Therefore, the Hall
conductivity 0., = ecn/H is ideal.

In conclusion the explanation of the zero-resistance
states is given. It is based on the two phenomena:
the divergent Coulomb screening and the inverse depen-
dence of the conductivity/resistivity on the local long
range electric field. It has been found that in the driven
state the Einstein relation is violated. The magneto-
conductivity and the diffusion constant in the driven
state is calculated in the framework of the microscopic
model and they agree well with the experiments.
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