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We study the temperature dependence of the monopole condensate in different Abelian projections of the
SU(2) lattice gauge theory in thermodynamic limit. Using the Frohlich-Marchetti monopole creation operator
we show numerically that the monopole condensate depends strongly on the choice of the Abelian projection.
Contrary to the claims in the literature we observe that in the Abelian Polyakov gauge and in the field strength
gauge the monopole condensate does not vanish at the critical temperature in large-volume limit. Therefore
the monopole condensate in these gauges is not an order parameter of the confinement-deconfinement phase

transition.
PACS: 12.38.Gc, 12.38.Aw, 14.80.Hv

1. Introduction. The confinement of color in QCD
is one of the most interesting phenomena in the mod-
ern quantum field theory. Numerical simulations of
non-Abelian gauge theories on the lattice [1] show that
the confinement of quarks is due to a formation of the
chromoelectric string spanned between quarks and anti-
quarks. Despite the color confinement is not understood
from the first principles, there are various effective (or,
phenomenological) models which describe the emergence
of the QCD string. According to the dual superconduc-
tor model [2], the vacuum of a non-Abelian gauge the-
ory is a medium of Abelian monopoles. The monopole
condensate — this is present in the confinement phase —
squeezes the chromoelectric flux coming from the quarks
and the QCD flux tube is thus formed due to the dual
Meissner effect. This flux tube is an analogue of the
Abrikosov vortex in an ordinary superconductor.

The key element of the dual superconductor picture
is the Abelian monopole. In the pure gauge theory the
monopole neither exists as a finite-energy solution to the
classical equations of motion, nor motivated by topo-
logical structure of the theory. However, if one fixes a
specific gauge, then the monopole positions can be iden-
tified with the certain class of singularities in the gluonic
fields. To this end one fixes the Abelian gauge which re-
duces the non-Abelian gauge freedom up to an Abelian
one [3]. The residual Abelian gauge group is necessar-
ily compact and it is the compactness of the residual
Abelian subgroup that guarantees the existence of the
Abelian monopoles in the Abelian projection.

It is impossible to identify the Abelian monopoles in
a general configuration of the gluonic fields using ana-

1e-mail: maxim.chernodub@itep.ru

IIucema B MITP® Tom 83 BHIM.7-8 2006

lytical tools only. Therefore the most investigations of
the dual superconductor idea is performed by numerical
simulations. The results of the simulations indicate that
the Abelian degrees of freedom in an Abelian projection
are in fact responsible for the confinement of quarks (for
areview, see, e.g., Refs. [4]). One of the striking features
of the Abelian projection is the effect of the Abelian dom-
inance [5]: the Abelian gauge fields provide a dominant
contribution to the tension of the confining string. More-
over, the internal structure of the string energy, such as
energy profile and the field distribution are very well de-
scribed by the dual superconductor model [1]. In partic-
ular, the monopole condensate in the Maximal Abelian
(MA) gauge is formed in the low temperature (confine-
ment) phase and the condensate disappears in the high
temperature (deconfinement) phase [6, 7].

On the other hand, almost all results supporting the
dual superconductor scenario were obtained in the so
called MA projection [8]. Besides the MA projection
there are Abelian projections which are defined by a
diagonalization of certain adjoint operators X[U] with
respect to the SU(2) gauge transformations [3]. The
most popular examples of such gauges are the Abelian
Polyakov (AP) gauge and the Abelian field strength
gauge (F12 gauge).

The important issue is to understand whether the
dual superconductor nature of non-Abelian vacuum is
universally realized in all Abelian gauges. In this pa-
per we study the universality of the dual superconduc-
tor mechanism in the thermodynamical limit extending
our preliminary work [9], where the universality of the
monopole condensation was tested in a finite volume.
Our study is motivated by conflicting reports of the pro-
jection independence of the dual superconductor mech-
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anism. A short review of the current literature on this
subject can be found in Ref. [10], and below we briefly
outline a few key observations for and against universal-
ity of the monopole mechanism.

The universality of the mechanism is supported by
the facts that (i) Abelian and Monopole dominance were
observed in more than one gauge [5, 11]; (ii) the Lon-
don penetration length measured in the MA projection
is the same as the one obtained without gauge fixing [12];
(iii) monopole condensation studied with the help of a
monopole creation operator was observed not only in the
MA gauge of SU(2) gauge theory [6, 7] but also in other
gauges [13].

The arguments against the universality include: (i)
in the MA gauge the monopole trajectories percolate
only in the confinement phase contrary to the case with-
out any gauge fixing, in which the monopoles are per-
colating in any phase [14]; (ii) the flux tube in differ-
ent Abelian projections looks differently [15]; (iii) chi-
ral condensate is dominated by the contributions of the
Abelian monopoles in the MA gauge [16, 17] contrary
to Fi2 [16] and AP [17] gauges; (iv) one can show ana-
lytically that in the AP gauge the dual superconductor
mechanism can not be realized [10], while the condensa-
tion of the monopoles may still occur.

In this paper we investigate the universality hypoth-
esis using the monopole creation operator introduced by
Frohlich and Marchetti in Ref. [18]. In Section 2 we
describe how to obtain the monopole condensate using
this monopole creation operator. In Section 3 we calcu-
late numerically the condensate in the MA, Fi» and AP
gauges in the thermodynamical limit. Our conclusions
are summarized in the last Section.

2. Abelian monopole creation operator in
SU(2) model. We study the SU(2) gauge theory with
the standard Wilson action, S[U] = —1/2(3_p Tt Up),
where the sum goes over the plaquettes P and Up is the
SU(2) plaquette variable composed of the link fields Uy,
Up=U; UzU:;r U, 1 . The link field is parameterized in the
standard way:
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In Abelian projection the residual gauge transfor-
mation matrices have the diagonal form QAP¢l(w) =
= diag(e®’, e~ ™), where w is an arbitrary scalar func-
tion. Under these transformations the diagonal field
0 transforms as an Abelian gauge field, 0,, — 05, +
+wg —Wg44, the off-diagonal field x changes as a double
charged matter field, Xz, — Xop + Wz +Wotp, the field ¢

remains intact. The SU(2) plaquette action contains [19]
various interactions between these fields as well as the
action for the Abelian gauge field 6:

S[UT= - Br(¢)cosbp +... (1)
P

Here 0p = 0, + 62 — 03 — 04 is a lattice analogue of the
Abelian field strength tensor and Bp(¢) is an effective
coupling constant dependent of the fields @, Ref. [19].
Following Ref. [6] we apply the monopole creation
operator of Frohlich-Marchetti [18] to the Abelian part
of the non-Abelian action (1). Effectively, this operator
shifts the Abelian plaquette variable fp as follows:

@monzexp{Zﬂp(g{)) [— cosfp + cos(fp + Wp)] }, (2)

where Wp = 2n6A~1(D, — w,), w, is a Dirac string at-
tached to the monopole and the Dirac cloud D, satisfies
the equation 6*D, = *§,. We have used the differential
form notations on the lattice described in detail in the
second paper in Ref. [4].

The operator (2) is clearly gauge invariant with re-
spect to the U(1) gauge transformations. One can also
perform a formal duality transformation with respect
to the quantum average of the operator (2) and show
that in the dual model — which has form of the Abelian
Higgs model — this operator is invariant under the (dual)
gauge transformations [6]. Moreover, one can represent
the partition function as a sum over closed monopole
trajectories. In this representation the quantum aver-
age of the monopole creation operator ®men(z), Eq. (2),
is given by a sum over all closed monopole trajectories
plus one open trajectory which begins at the point z,
Refs. [18]. Thus, this operator creates a monopole at
the point 2.

Note that in this paper we are using the “old” defin-
ition [18] of the monopole creation operator. The “new”
definition [20] takes into account charged matter fields
but it is very involved from the point of view of numer-
ical calculations. Moreover, results of Ref. [21] clearly
show that there is no qualitative difference between the
old and the new definitions.

To get the monopole condensate we have to study the
effective constraint potential for the monopole creation
operator ®.,0n,

Vere(®) = ~1n[(5(2 = 2= 3" B0on(@) )] @)

This potential selects the zero-momentum component of
the creation operator. The minimum of this potential
corresponds to the monopole condensate. However, a
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numerical calculation of the potential Veg.(®) is time
consuming, and in this paper we present results for the
probability distribution

V(®) = — 1n[<5(<1> - @mon(z)»], (4)

which has a meaning very similar to (3).

We perform our study in the Abelian Polyakov
gauge and in the Abelian field strength gauge which
are defined as we already discussed by the diago-
nalization of the (untraced) Polyakov loop, P,[U] =
=UzaU, 34---U, 34, and of the U, 15 plaquette, with
respect to gauge transformations, U, , — QzUw,qu e

We compare the potential in these gauges with the
monopole potential obtained in the MA gauge in Ref. [6].
The MA gauge is defined by the maximization of the lat-
tice functional

RualU] = Y T (03U (s, mosU' (s, )),  (5)

8,0

with respect to gauge transformations. Here o3 is the
Pauli matrix.

3. Numerical results. We simulate the SU(2)
gauge fields on the lattices L3 x4, L, = 12,14, 16, 24 with
C-periodic boundary conditions in space directions [22].
The C-periodicity for non-Abelian fields corresponds to
the anti-periodicity for the Abelian gauge fields. We
need these conditions because one can not create the
charged particle in a finite volume with periodic bound-
ary conditions (the Gauss law) [6]. In the case of SU(2)
gauge group the C-periodic boundary conditions as de-
fined by appropriate matching conditions at the space
boundary: U, , — QTU, ,.Q, Q = io,.

The effective potential in the AP and Fj, gauges
was calculated using 400 independent configurations of
SU(2) gauge fields for each value of the gauge coupling 8
at a fixed lattice volume. On each configuration the dis-
tribution of the monopole creation operator is evaluated
in 20 points. The effective potential (4) is the logarithm
(taken with “minus” sign) of the distribution function.
The results for the MA gauge are taken from [6)].

The statistical errors of the data for the potential is
evaluated using the bootstrap method. First, we cal-
culate the so-called “initial ensemble” of the values of
the monopole creation operator. Second, we randomly
take these values and construct N, additional ensem-
bles (typically, Nens = 500). Note that any given ele-
ment of the initial ensemble may enter the constructed
ensembles more than one time. The number of entries in
each of the additional ensembles is fixed to be the same
as in the initial one. Third, for each ensemble we con-
struct a histogram, the (minus) logarithm of which has a
4 Tucema B MIAT® Tom 83
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meaning of the monopole potential, V (@), according to
Eq. (4). Therefore, for each value of the monopole field,
®, we get N, values of the potential, V', distributed
as a Gaussian. The central value of this distribution
gives us the value of the potential at given lattice vol-
ume L2 x L;, B and ®, V = V (&), while the width of
the distribution provides us with the statistical error.

The effective monopole potentials in the MA, AP and
Fy» gauges on 162 x 4 lattice were previously investi-
gated in Ref. [9]. It was clearly observed that in the
AP and Fj, gauges the global minimum ®,,;, of the ef-
fective potentials — which corresponds to the value of
the monopole condensate — is the same for these gauges
within numerical errors. Moreover, the potential in the
MA gauge is different from AP and Fij5 potentials. In
the strong coupling regime the condensates in the three
gauges are the same, ®,in &~ 1. In the deep deconfine-
ment phase the monopole condensate tend to vanish in
MA gauge while in AP and Fi, gauges the condensate
is still non-zero. Thus, there is a clear evidence of the
failure of the universality hypothesis.

In order to make the qualitative conclusion of Ref. [9]
strict, one needs to perform an extrapolation of the re-
sults to the thermodynamical limit. In fact, in the SU(2)
gauge theory the phase transition is of the second order,
so that the finite volume effects may be essential for the
determination of the monopole condensate. In an unfor-
tunate case the results of Ref. [9] may be spoiled by the
strong volume dependence at the transition temperature.

We calculate the condensate on the lattices with
L, = 12,14,16,24 spatial extensions and perform the
extrapolation L, — oo using the formula:

%, =" 1 C/L. (6)

The examples of the fits for the AP and the Fi» gauges
are shown in Fig.1. The values of x?/d.o.f. are in the
range 0.2 ~ 1.

The monopole condensates in the thermodynamic
limit (Ly — oo) for all three Abelian projections are
shown in Fig.2 as functions of 8. One can clearly see
that the monopole condensate in the MA projection van-
ishes at a certain critical 8 = 3, which is very close to
the phase transition point, 3, ~ 2.3. Contrary to the
MA gauge the monopole condensates obtained in the AP
and the Fy5 gauges do not vanish at 8 = (.. This result
is in contradiction with observations of Ref. [13].

The dependence of the monopole condensate on (3
can be fitted by the following function:

() =1-(8/8.)", (7)

with x2/d.o.f. =~ 0.3. It occurs that v = 1.2(5) and
B. = 2.31(3). The value of 8. coincides within error
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Fig.1. The extrapolation (6) of the monopole condensate
to the thermodynamic limit in (top) the AP and (bottom)
the Fi» gauges for various values of the gauge coupling 3
and L, = 12,14, 16,24
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Fig.2. The monopole condensate in the thermodynamic
limit in the MA, the AP and the Fi» gauges. The dash—
dotted line is the fit of the monopole condensate in the MA
gauge by Eq. (7). The critical value of the gauge coupling
(along with the numerical error) is denoted by the vertical
dashed line

bars with the known critical value [23] on L3 x 4 lat-
tices.

4. Conclusion. We have presented a clear evidence
of non-universality of the dual superconductor mecha-
nism in the thermodynamic limit. Our results confirm
the conclusion of Ref. [9] made in a finite-volume case.
We show that the value of the monopole condensate de-

pends on the choice of the Abelian projection. The
independence was found only in the unphysical strong
coupling region. We studied three the Polyakov, the
field strength and the Maximal Abelian gauges, and the
proper behavior of the condensate was observed only in
the MA gauge. Our conclusion contradicts the results of
Ref. [13] where condensate was found to be projection—
independent.
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