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Curved One-Dimensional Wire with Rashba Coupling as a Spin Switch
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We propose a semiconductor structure that can switch the electron spin using the interplay between the
Rashba effect and geometry of the system. In detail, the structure consists of a strongly curved one-dimensional
ballistic wire with intrinsic spin-orbit interactions. Here, in contrast to the previous proposals based on the
straight quantum channels, the spin-switching is achievable even if the electrons are in the eigen state and
spin-precession does not occur. Using parameters relevant for InAs we investigate the tunability of this effect

by means of external electric and magnetic fields.

PACS: 72.25.Dc, 73.23.Ad, 73.63.Nm

In the past few years the idea to use electron spin
in mesoscopic semiconductor devices has generated a lot
of interest. Datta and Das [1] describe how Rashba ef-
fect [2] (with the assistance of spin-filtering contacts)
can be used to modulate the current. The basic idea is
that the spin precession can be controlled via Rashba
spin-orbit coupling associated with the interfacial elec-
tric field present in the quantum well that contains a
two-dimensional electron gas. One of the most promis-
ing materials for this purpose is the InAs semiconduc-
tors, where the tuning of the Rashba coupling by an
external gate voltage was recently achieved by Grundler
[3] and Matsuyama et al. [4].

Note, however, that since the implementation of spin
filtering contacts into the Datta—Das device requires
rather complicated design, the optical methods for gener-
ation and detection of spin-polarized currents look more
preferable. In [5, 6], a non-equilibrium population of
spin-up and spin-down states in quantum well structures
has been experimentally established applying circularly
polarized radiation. The spin polarization results in a
directed motion of free carriers in the plane of a quantum
well perpendicular to the direction of light propagation.
Because of the spin selection rules, the spin-polarization
of the current is determined by the helicity of the light
and can be reversed by switching the helicity from right
to left handed. Note, that the recombination of spin po-
larized charged carriers results in the emission of circu-
larly polarized light. It is possible, therefore, to use the
optical methods for the detection of the spin-polarization
as well.

The basic element of the “conventional” spin-switch
represents a straight quantum wire with spin-orbit cou-
pling. Note, however, that if the electrons contributing
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to the current are in the eigen state then the spin preces-
sion does not take place here, and, therefore, the “con-
ventional” spin-switch does not work at all (see Fig.1a).
In this Letter, we propose a new type of spin-switch
based on the interplay between the curvature of the elec-
tron trajectory and Rashba spin-orbit interactions. In
particular, we consider a curved wire consisting of a
semicircle with radius R attached to the infinite straight
one-dimensional channels made of the same material as
the curved part. Though the electrons in the input
channel are in the eigen state, the spin orientation can
be changed at the output of the device (see Fig.1b,c).
Curved one-dimensional quantum channels in InAs [7]
are expected to be used for the experimental check of
the present proposal.

On the face of it, the device is similar to the one
investigated by Bulgakov and Sadreev [8]. In that
work, however, the authors assume a priory the adia-
batic regime: the radius of the curvature is so large that
the electrons do not feel the junction between the curved
part of the wire and input/output channels. In contrast,
we start from the very general solution of Schrodinger
equation for the whole system (i.e. input channel — semi-
circle — output channel) and, therefore, the description
of the strongly non-adiabatic regime is possible as well.
Note, that flexing the quantum wire leads to the geo-
metrically induced potential [9]. However, its effect on
the electron motion is negligible in real systems [7] since
the geometrical potential is much smaller than the Fermi
energy.

In order to describe the spin orientation we introduce
the following quantity

P=(G*-j7)/GT+i), 1
where j* denote the probability current densities [10]
with a given spin orientation, and “+” are the spin in-
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Fig.1. (a) Spin dynamics in the “conventional” spin-switch
of Datta—Das type based on a straight quantum channel
with Rashba coupling. The spin precession does not oc-
cur as long as the initial electrons are in the eigen state.
(b) Spin dynamics in the curved quantum channel with
Rashba coupling (adiabatic regime A?/2am* R < 1). Here,
the spin follows adiabatically the electron trajectory, and
its orientation changes with respect to the laboratory coor-
dinate system. (c) Spin dynamics in deeply non-adiabatic
h%/2am* R > 1 regime. Here, the electron spin is able to
leave its eigen state and keep its orientation with respect to
the laboratory coordinate system. The relation i*/2am*R
can be tuned by the gate-voltage dependent Rashba con-
stant a [3, 4]

dices. It seems essential to emphasize that the quan-
tity P is controllable experimentally since the currents
jT and j~ can be generated independently by means
of absorption of circularly polarized light beams with a
given helicity [5, 6]. In general, the quantity P has the
meaning of projection of the probability current den-
sity spin-polarization on the spin-quantization axis. In
the most important case of zero external magnetic field
the spin-quantization axis is always perpendicular to the
direction of the motion and lies in zy plane (see Fig.1).
Note, that the spin orientation always coincides with the
spin-quantization axis in the adiabatic regime, i.e. the
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particle does not leave its eigen state, and P, =
the following we show, how one can manipulate with the
output polarization Py, by means of external electric
field (via Rashba constant).

out- In

To do that, we calculate single particle spin-split
states for the system shown in Fig.1b,c. To this end, we
divide the wire in three parts: input channel, semi-circle,
and output channel. We use the cartesian coordinates
to describe the input and output channels (the region
z < 0 in Fig.1b,c) and the polar coordinates for the
description of the curved part of the wire. The Hamil-
tonians describing the propagation of an electron in the
input/output wires read

K2 7.2 T

- k +ez m ke

Hwir = Zm 2
€ ( —iak, k2 ) @)

2m*
whereas the propagation through the semi-circle of ra-
dius R is governed by the Hamiltonian [11]

A, :( €0l +ez ae ™ (g, )/R)
Y e (g, +3) /R €0l —€z
©)
Here
];:_ig_il (}——ii—g
= e TSR T e, 3

are the momentum and the angular momentum opera-
tors respectively, ® = 7 R? B, is a magnetic flux through
the area of a ring of radius R, &9 = 27 hic/e is the flux
quantum, m* is the effective electron mass, a is the
Rashba constant, e = hA?/2m*R? is the size confine-
ment energy, ez = g*upB,/2 is the Zeeman term. We
adopt the vector potential A to be tangential to the di-
rection of the current. Thus, in the semi-circle we choose
A(z,y) = 1B, (zj — yi), or, in cylindrical coordinates,
A,(p) = ®/27R, whereas the vector potential in the in-
put and output channels is determined by the continuity
condition at the junction point with the curved part of
the wire (z = 0, y = £ R); hence we have 4, = /27 R.

We denote the wave functions for each part as
¥E (o) for the semi-circle, ¥ (z) and ¥ () for the
input and the output channels respectively. In order to
find the wave function of the whole system, we impose
boundary conditions that warrant the continuity of the
wave function and its first derivative on the boundaries
between the parts of the wire

(T4 + 95) le=o = (Tdiry + Toury) lp=—n/25
(Tdiry + Poury) lo=n/z = (Tde + ¥oue) la=0,

(VL + VIL) om0 = (VI + V) lo=—n/2,
(V¥ry + V00 lomrz = (VT3 + VL) le=0-

(4)
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Solutions of Schrodinger equations for Hamiltonians (2),
(3) give us the desired spinor wave functions for the in-
put, output and curved parts of the system. For the
input channel we have

+ + ikt + —ikt2
ie cos 7y (Aoe + ATe )

Ut (z)=e®oF
.. ikt et
in — SlIl’Y+ (Aai-ezk Tz _ A+e—lk .’D)

)

(5)
P — — gtk _ A—,—tkT z
\I’i;(:v)ze;:Rz isin-y (A0.6_ A e' ’ ) ’
cosy~ (Age”“ T4 Ametk ”)
(6)
where
+__ fz2 €z \?
tany™ = kia+ 1+(kia)' (7

Here, k* are the Fermi wave vectors that satisfy the
dispersion relations Ep = hzki2/2m* + \/azkiz + €%,
where Ep is the Fermi energy. In the case of zero
magnetic field (¢ = 0), the Fermi momenta k¥ take
the simple form k* = Fm*a/h? + ko, where kg =

= \/(m* a/h?)? + 2m* Ep /h2. The coefficients A* are
the reflection amplitudes that have to be found by im-
posing the boundary conditions (4), whereas AT are the
incident ones. For the output channel the reflection am-
plitudes are assumed to be zero, and the corresponding
spinors read

+ + i(k++i)$
\I’—oi_ut(w) = D sy '(k++§i) ’ (8)
iDVsinyte'" TER/T

‘D sin~— (k™ +525)
V@)= T e )
out D~ cosy e'* Twr)®

Here D* are the transmission amplitudes. We have
changed sign of y* for the output wire since the electron
motion changes its direction to the opposite one.

The eigenfunctions of the Hamiltonian (3) have a
view e
curv(‘p) =e'?0¥ x

( B cosateiltr—2)% 4 O+ cos fre—ilztai)e ) (10)

P+

Bt sinatei3tar)e — Ot sin gre—ilar -3¢

_ P2
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where
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tanat = 7+\/1+ (7) (12)
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and qli% are the Fermi angular momenta for right-moving
electrons that satisfy the relation

€ £\’
2 2
EF:IO+50q§ i\/(%) +(q§so—sz) .
(14)
The relation for qul differs only by the sign before £z.

If the Zeeman effect is negligible, then the equation (14)
allows the simple analytical solution with respect to q,jé

(a7)

ma (P 2+k (15)
K2 20m*R o

(cf. with k*). Note, that the chirality index is omitted
in (15), since qf = qf at B, =0.

¢t/R=+

Imposing the boundary conditions (4) on the wave
functions (5), (6), (8) — (11) we obtain a solution of the
Schrédinger equation for the whole system. At this point
it is pertinent to turn to the calculation of the input,
reflected and transmitted current densities. Each cur-
rent density is given as a sum of its two spin-polarized
parts j = j* 4+ j—, where the components j* are de-
fined by the corresponding coefficient, i.e. ji = |A(}*L 12 jo,

jl:-iﬂ = _|Ai|2j0a j;lflt = |Di|2j01 and
h *
jo = = |k* + T sin(29%)| . (16)

The transmission probability is defined as T' = jout /fin,
and the reflection one as R = jren/jin- Note, that the
general (numerical) solution gives 7 = 1 and R = 0,
which means that there is no particle backscattering,.

Let us assume, that the input probability current
density polarization P, is equal to 1, i.e. A = 1,
Ay = 0, and the electron spins in the input channels
are aligned in y direction (Fig.1b,c). Using the general
solution of Egs. (4) we plot the dependences of P,y on
the radius of curvature R (Fig.2) and Rashba constant
a (Fig.2, inset). From the inset we can see immediately
that the spin-swithching is achievable by means of the
external electric field (via Rashba coupling). In order
to explain this we solve Egs. (4) in two cases: adia-
batic h%/2m*Ra < 1 limit and strongly non-adiabatic
h%/(2m*Ra) > 1 one. The first limit is, however, not
really interesting because no current density redistri-
bution between the two spin-split modes occurs here,
ie. [DY|? =1 and |[D~|> = 0. Intuitively it is clear,
that the curved wire does not differ too much from the
straight one as long as A%/2m*Ra < 1. Therefore, the
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Fig.2. Output polarization Py, versus radius of curvature
at Pin = 1 and different external magnetic fields. The pa-
rameters are m* = 0.033m., Er = 30 meV. Inset: Output
polarization versus Rashba constant o at different radius R
of curvature and zero external magnetic field. Such values
of o and R are achievable experimentally in InAs [3, 4, 7]

spin-polarization keeps its +100% initial value while the
current flows through the system (Fig.1b).

In the opposite, strongly non-adiabatic limit, the sit-
uation changes drastically. Indeed, Eqgs. (4) at a* =
= 7/2, #* = 0 and negligible magnetic field allow the
following approximate solution: |A*|> = |C*2 = 0,
|B*|? = 1, and [D*|? = L £ 1cos [r (¢ — g5)]- Thus,
the current density redistribution occurs in the strongly
non-adiabatic regime, and the polarization reads

Pyt = cos [77' (QE - ‘IE)] ) (17)
where the difference between the Fermi angular mo-
menta has a view

_ 2m*Ra h? 2
%~ dn = T\/” (zamem) - 09

Note, that if the radius of curvature is exactly equal to
zero, then the difference (18) is equal to 1. Thus, the
output spin-polarization P,,; = —1, whereas the initial
one was P, = +1, i.e. spin-polarization is switched to
its opposite value at R = 0 and B, = 0. From Eq. (18) it
is also clearly seen that the change of the radius is equiv-
alent to the tuning of Rashba coupling strength. There-
fore, it is possible to change output spin-polarization by
tuning Rashba coupling at constant radius of curvature
(Fig.2, inset).

The difference between the Fermi angular momenta
qg and q;tf depends not only on the Rashba coupling,
but on the Zeeman splitting as well. Therefore, the crit-
ical values of g — q;g, when the polarization P changes
the sign, are tunable by means of the external magnetic
field. Unfortunately, we do not have analytical formulae
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for qliz’ 1, at non-zero magnetic fields, but one can see the
effect in Fig.2. Note, that the behavior of P,y is sensi-
tive to the direction of the perpendicular magnetic field
for lack of chiral symmetry in the dispersion relation
(14).

The major points covered by this Letter may be
summarized as follows (i) strongly curved 1D wires
with Rashba spin-orbit coupling can change the out-
put spin-polarization of the electron beam up to the op-
posite one though the initial electrons are in the eigen
state and spin-precession does not occur, (ii) the spin-
switching can be governed by the external electric field
(via Rashba constant, see inset in Fig.2), (iii) in ad-
dition, the spin-switch can be tuned by the magnetic
field (via Zeeman effect). In our opinion, the main out-
come of this Letter is that strongly curved 1D wires with
Rashba spin-orbit coupling can serve in the capacity of
reflectionless and high-speed spin-switchers in some spe-
cial cases when the spin carriers are in the eigen states
(spin-up or spin-down) and, therefore, the usage of the
“conventional” spin-precession based Datta-Das scheme
is not possible. This situation can take place, for ex-
ample, in the experiments with the optical absorption of
circularly polarized radiation [5, 6]. We believe that the
interplay between Rashba spin-orbit coupling and non-
zero curvature of 1D systems can find especially fruitful
applications in spintronics.
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