Pis'ma v ZhETF, vol. 83, iss. 8, pp. 420 —424

© 2006 April 25

Generation of macroscopic entangled states by means of x(?

nonlinearity without photon number resolving detection

S. A. Podoshvedov?!)
School of Computational Sciences, Korea Institute for Advanced Study, Seoul, South Korea 130-722

Submitted 16 February 2006
Resubmitted 16 March 2006

We generalise the scheme of conditional preparation of x(2) macroscopic entangled states [S.A. Podoshvedov,
JETP 129, (2006)]. The studied system consists of the system of coupled down converters with type-I phase
matching pumped simultaneously by powerful optical fields in coherent states, one auxiliary photon in super-
position state of two input modes and projective measurement system. The projective measurement system
involves two Hadamard gates introduced to generated output modes followed by photodetectors. Identifica-
tion of macroscopic entangled states is produced by registration of one photon. No photon number resolving

detection is requested for the studied scheme.

PACS: 03.65.Ud, 42.50.Dv

Since Schrodinger suggested his famous cat paradox
[1], there has been great interest in generating and ob-
serving a quantum superposition of a macroscopic sys-
tem. A superposition of two coherent states with a =«
phase difference and large amplitude of the coherent
states (cat state) is considered as a realization of such
a macroscopic superposition. It has been theoretically
known that the cat state can be generated from a coher-
ent state by a nonlinear interaction in a Kerr medium [2].
The same cat state passing through the Hadamard gate
gives a rise to generation of coherent entangled state
that may be used in quantum information processing
[3—8]. So for the time being, there are different studies
concerning use of the coherent entangled states for quan-
tum teleportation [3], quantum computation [4], quan-
tum nonlocality test [5], entanglement purification [6],
error correction [7], and quantum metrology [8].

But despite enormous progress in theoretical study of
the states with point of view of both fundamental quan-
tum physics and possible practical applications, real ex-
perimental use of the states remains elusive entity. The
Kerr nonlinearity (x(®) nonlinearity) of currently avail-
able nonlinear media is extremely small to generate re-
quired level of the superposition state of coherent states
[9]. Estimations presented in [10] show, one needs an
optical fiber of about 1500km for an optical frequency
of w = 5-10"rad/s to generate a coherent superposi-
tion state with currently available Kerr nonlinearity. It
is possible to make use of such long fiber in practice to
use its nonlinear effect but the effects of decoherence and
phase fluctuations during the propagation become very
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large to destroy the generated cat state. Possible meth-
ods to generate coherent entangled states are considered
in [11].

Here, we present generalization of out previous work
[12] to conditionally prepare two types of macroscopic
entangled states in output pumping modes of the stud-
ied system without photon-number resolving detection.
Our system is constructed from two down converters
(x® > x(®) with type-I phase matching and Bell state
measurement scheme consisting of two Hadamard gates.
To conditionally prepare the states, we use coherent state
in pumping modes with one auxiliary input photon in
superposition state for interaction with x(?) nonlinear-
ity. We determine whether x(®) macroscopic entangled
states are generated by postselection by means of reg-
istration of one photon in auxiliary generated modes.
Given scheme does not need special detectors discrimi-
nating between one- and multi-photon number states.

We start with simplified three-mode Hamil-
tonian [12]
g thr gy -
H= T(GI a5 Gp — @y, 4201), (1)

where all designations are the same as those used in [12].
According to [12], the output of the SPDCI with Hamil-
tonian (1) and input condition |00)12|a), is given by

oo
[OD) =" |n)1[n)2|$07),, (2a)
n=0

with wave the following function |<I>$L00)) p in the pumping

mode
1299), = (809 (), =
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where 3% (1) = £ (; 7=1), ({52 (;0), £29 (n; 0),

.y 2(??11(17, 0)} = {1,0,...,0}) are the wave ampli-
tudes satisfying the system of I + 1 differential linear
equations presented in [12]. Here, n = rL/2¢ with L be-
ing the crystal length is the coupling constant, 7 = ¢t/L
(7 € [0;1]) is the time scaled such that 7 = 1 corresponds
to the crystal exit.

Consider the same Hamiltonian (1) but with other
input condition [10)12|c)p. Then, the same mathemati-
cal approach gives the following wave function

(o)
[@09) = 37 [+ Daln)af@),  (30)
n=0

with wave function in the pumping mode

1800), = |<I>£3°) (5m)p =
10
= exp Z ((2(,’+n)+1),n+1(n)|l)p,

(3b)
with the wave amplitudes f2n +1,%(m; 7) satisfying other
set of linear differential equations

s, o (m;7) 10
T n(v/k(k—1)(n—k+2) (nJ21k177’)

~VEEF D —k+ D ). (30)

10 (10 (10
Here, fi),u(m) = fupiamr = 1) ({49 00),
10 10
DD 050), oo, fDL M0} = {1,0,...,0}) are the
corresponding wave amplitudes. Similarly, the Hamil-
tonian (1) with input condition |01)12|a), gives a rise

the following wave function

jgO) = Zln [+ 1)220Y),, (4)

n=0

where the wave functions |¢>£,01))p are given by (3c) with
substitution of the symbol (10) on (01) and |‘I>(n10)>p,- =
= |25"),.

The optical scheme shown in Figure is described by
the following Hamiltonian [12]

~ ihr R TR

H= 5 —(atafap, — af Gqa3)).

(5)

As input condition to Hamiltonian (1), we take the
following state

A+ A A A+A+A _
a,, G2G1) + ag ay ap,

T7y) = %{uoow + 10010} }1234]0)ps [ @)y (6)

with real value of the quantity « of the coherent states

and one photon in superposition state of two auxiliary
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Experimental arrangement to conditionally produce x(z)
macroscopic entangled states in the output pumping
modes. The system involves the system of coupled
down converters with type-I phase matching simultane-
ously pumped by the powerful modes in coherent states
with the same amplitude and one auxiliary input photon
in superposition state of the modes 1 and 3, respectively.
HG is the designation for the Hadamard gate. D;—Dgare
the corresponding registering detectors

modes 1 and 3 (subscripts 1, 2, 3, and 4 concern the
corresponding input auxiliary modes, respectively). By
virtue of linearity of quantum mechanics, the output of
the Hamiltonian (5) with input condition (6) can be ex-
pressed as

1
Tour) = ﬁ{w%?}) +120N, (7a)
where
200y = 2P eP), (7b)
2Py = 2P eEY). (7¢)

and the wave functions |¥ 10)) and |\II(I(}0)) with sub-
scripts I and II concern first and second down con-
verters, respectively.

The overall output wave function |Poyr) can be
rewritten explicitly as

1
v = —=X
[Tour) 5

[ |1000)1234|®{?),, |20 )

) Ypu Yot

+|0010)1234|<1>(°°)),,1|<I>(1°)) +

» +|1011>1234|<I>51°)>m|<1>‘°°)>m+

+|1110>1234|<I>£00)) Yps

+(2100) 12348, Ypa
.

| +]0021)1234| 85"

|<I>£1°’>p2 +o.

7

Next step is to project the total state (8) onto one
of the macroscopic states. For the purpose, we employ
the Bell state measurement setup with auxiliary gen-
erated modes. According to the Figure, the first and
third auxiliary modes are directed to one Hadamard
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gate, while the second and fourth modes are directed
to other Hadamard gate. Hadamard gate produces the
following transformations

[10)5 > Z{[10) + 01}, (92)
015~ Z{[10) - (01}, (9b)
(115 Z={120) - [02)}, (90)
2005~ Z={120) + V2IL1) + 02}, (00

V2[11) + 02)}i;. (9¢)

Then, the state [Toyr) (Eq. (8)) is transformed into
|¥6H ) which has the form

1
102)i; — 5{]20) —

1
v — X
| OUT) \/i

( 3
p(+)
11 |1000)1234| A} py o +

pgl)

+4/=:—10010)1234|A_) p po +

1
Pg 3)

+ [2100)1234|$21) py s +

p(2)
+ 23 [2001)1234|922) py po +

x < ( 0, (10)
W P23 10120)1554/8) s +

(4)
+ p23 [0021)1234|$24) p, p, +
p( )
+ 33 [1110)1234|2_ ) p, p, +
p(+)
+ 33 |1011)1234|Z4 ) pypo + - - - )
\

where we introduce the following macroscopic entangled
states

0 00 00 10
Ay = (26020 125), 26”5,
pPip2 (:I:) ’
P11

(11)

i

(12a)

|Ql)P1P2 =
|¢>§°)>m 1800, +120),, 125 o+
581 ) 186 ), + 125" 21" )

|Q2)p1p2 =
10 10 00
|<I>§°°)>pl|¢>é Mpa — 1885, 87+ / @
23
+5(125)5, 1255, — 1261 121) )
(12b)
‘93)111172 =
10 00
—|1‘1>§°°)>p1|<1>51°)>p2—|<1>3 )0, 1207),, //_p
23
+5(125 )5 25", + (25", |4>“°)
(12¢)
|Q4)p1pz =
|<I>§°)>pl|¢>£°°)> — 2y, 185),, / @
p23a
525 125} — 125"}, |¢>“°)
(12d)
= 1805, 1857) s £ (28518,
“i)Plpz = )
p(i)
33
(13)

The normalized coefficients, in which the first subscript
indicates the number of detectors that register coming
photons while the second subscript indicates the total
number of the detected photons, are given by

pit) = 20357 1857) (' 18{') + (2" |8{')[?),
(14)
(1) -9 (10)|<I>(10))<*I>g00)|Q>§00))+

<<I>f€1°’|¢‘°°’><4>(°°)|<1>‘1°’>
+v2(3(18(19y (30 |50y ¢
+v2(20'7 35" (2™ |2
+V2(2" 21"
+V2(2” 2"
+(@"7136°7) (@1 310+
+@{ 37 )21 |2"),
pid = 20|50 (@121~

+

( )
(@ )
(q,(lo) |<I>(10))+
(21”21 +

(15a)

—2(3§ 91827 |8{!”) -
—v2(2{ |82 |80 +
+v2(2{' (88 |2{'V) -
—|—\/§<<I>((]00)|<I>£00))(Q>(10)|<I>(10))+
+v2(80 [8() (2{'7|2{*V)+
+(@0) 185" ) (81 |8 -

—(@57 8y (3 |8§™), (15b)
sy = 2(35 18003 18"+
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+2(8"7131"7) (@13~
ﬁ( (10)|‘I>(10) (3!

—v2( ( )
\/i<‘1>(00)|‘1)(00) (Q(lo)lé(lo))_
\/i<§(00)|‘}(10) <§(10)|§ 00))+

+(@97 12573 18(') +

(00) |‘I>(00))—

(
)
‘1)(10)'{)(00)> <I>(00)|<I> 10)y
)
)

+(@”18{") (2|8, (15¢)

3 = 2(2{'7(2{'V)(3{" |8{*) -
—2(319)3(00)y (00 5(1))
+\/§({>(1°)|<1>(1°))(<I>(°°)|<I>(°°))

\/5(‘}(10)|‘I>(°°))(<I>(00)|{> 10))+

V23091300 (3019510
(@ )@ )

\/i (00) |§(()10) (10) |‘I>100) +

+(@ 1807y (2 (17) -

—(@5" 21" (21" |2"), (15d)
pis) = 2(25" 120" 8{'7) + [(25" 2],
(16)

As can be seen from Eq. (10), different combinations
of detectors participate in identification of the macro-
scopic entangled states. Namely, if detector D, registers
one photon, then the state |Aj)p,p, is generated with
success probability P(+) |p11)| /4. If detector Dj reg-
isters one photon, then the state |A_),, p, is generated
with success probability P, = [p{;’[2/4. If any pair
of detectors D1, Dy, D3, and D4 register three photons,
one of them registers one photon and other registers two
photons, then the total state |¥(,,1) (Eq. (10)) is pro-
jected onto one of the states |Q;)p,p, (! = 1 —4) with
corresponding success probability P2( |p(’)| /8. The
outcome of the Bell state measurement resulting in three-
fold simultaneous detection of three photons by three de-
tectors, (one photon per one detector), reduces the total
state | ¥y (Eq. (11)) either onto the state |ZE_),,p,
with success probability P:,,(; ) = |p3;)| /8, or the state
|E4+)pips With success probability P(+) |p(+)| /8, and
so on. For our purpose, we are interested in events when
only one photon is registered in auxiliary modes.

Let us now introduce numerical characteristics for
the macroscopic states [12]. To do it we are going to
decompose the wave amplitudes le 1 )(n) and fz(llJr)1 +(m)
into asymptotic series in parameter n that always takes
Mucema B MIAT® Tom 83
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very small values in real experiments (n < 1) [12]. Up
to first nonvanishing order in parameter 7, we have

In?
S () =1- =, (17a)
ftiam) =1-1n". (17b)

Then, the macroscopic entangled states |AL)p, p, can
be rewritten after proper renormalization taking into ac-
count asymptotic decomposition (17a) and (17b) as

|A:|:)p1p2 = |A:|:(aa77))171p2 =

=Ny (aa n)('aa n, 10)?1 |a’ n, 00)1,2:&

i|aa77,00)p1|01»77, 10)1?2)’ (183‘)
with normalization coefficient
1
Ny = Nﬂ:(aﬂ?) = (lsb)
v2(1 £ [{e, 1,00]c, 7,10 )
and | )
.. Q,1,1])p;

|, 1, 8)p, = D (18¢)

Vian,ijle,n,ij)’

where ¢j = 00, 10 is the index to distinguish the modi-
fied coherent states from each other and p; means either
p1 Or ps, respectively. Modified due to x(?) nonlinearity
coherent states (non-normalized) are given by

0 l 2
om0 = exp(=a?/2) 3 T (1= ) i =
= [1 - % (a + a%)] s, (18d)
o 1
oo 1,10}y, = exp(=a?/2) Y- (1= t?) |1y =
=0 °

= [1 — an? (a + % ] |a)p; - (18e)

Using Eqs. (18d) and (18e), one obtains the following
relations for the states

(aﬂ), 00|a,7l, 00) =p; (01777, 00|a,7h Oo)p; =

= 1—a2n2+#(1+a2), (19a)
(e, m, 10|, 1, 10) =p, (e, m,10|e, 7, 10)p, =
=1-2a2n% + o?n*(1 + o?), (19Db)
(a,m, 00|, m,10) = (e, 1, 10|ex, 13, 00) =,
=p: (o,1,00[a,,10)p, =p; (@, 7, 10a,7,00),, =
PR G N Ay (19¢)

2 2
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The probabilities for the macroscopic entangled states
|AL)p p, to be observed in total state (10) in leading
order in 7 can be estimated as

PE) =1 - 3022, (20a)
B a2yt
P = TR (20b)

As can be seen from Egs. (20a), (20b), the probability
to generate the state |A, ), p, is most probable and is
almost equal to one, since the condition an < 1 holds
in practice. Following [12], it is possible to estimate the
values of concurrence of the states |Ait)p,p,. So, the

concurrence of the states |AL)p, p, is given by
2

1+ a?

C(|A+>P1P2) = 2N—?—(1 - az) = ~ a2n4/8a (21)
while the concurrence of the state |A_),, ,, is equal to 1
(C(JA+)pips)) not depending on the values of o and 7
[12].

In conclusion, we have proposed optical scheme con-
sisting of system of two spontaneous parametric down
converters with type-I phase matching with one auxiliary
photon in superposition state of two input modes com-
bined with Bell state measurement arrangement to con-
ditionally produce two types of the macroscopic entan-
gled states. Pair of the Hadamard gates is used in identi-
fication of the outcomes of the states in auxiliary modes
and, as consequence, allows identifying the macroscopic
entangled states in output pumping modes. The stud-
ied scheme enables to conditionally produce macroscopic
entangled state |A ), p, with almost unit success prob-
ability but with small amount of entanglement. The
same system provides us a possibility to conditionally

get macroscopic entangled state |A_),, ,, with small suc-
cess probability but with concurrence equal one. The
proposed scheme requires no photon-number resolving
detection, i.e. only a “YES/NO” of one of two detectors
suffices.
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