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New possibilities in crystal morphology
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Two new morphological phenomena are predicted in crystals: meniscus disappearance and meniscus fixa-
tion. Helium crystals are the most convenient objects for their observation.

PACS: 67.80.—s

Since the discovery of faceting of helium crystals
there were many experimental and theoretical studies
on the energy of elementary steps, the step-step interac-
tions, and the surface energy anisotropy (see for a review
[1]). Most of the experimental results were obtained by
dynamical methods, such as measurements of crystal-
lization waves spectrum [2, 3] and the surface mobility
near the roughening transition [4] in “He, spiral growth
velocity [5] in ®He. On the other hand, all these para-
meters could be measured in statics too.

We start from the discussion on the possibility to
measure the (free) energy of elementary steps 8 under
static conditions. It seems, 3 could be derived directly
from measurements of the facet size. As was shown
by Landau [6], the equilibrium facet size is proportional
to 8. However, in practice this does not work because
the corresponding relaxation times are extremely long:
in contrast to a rough surface, the kinetic growth co-
efficient of a facet is zero at small driving forces. It
means that under stationary conditions the facet is al-
ways metastable and its size is far from equilibrium
value. In this Letter we propose a new method to mea-
sure @ under static conditions not affected by this dis-
advantage. The more precise analysis opens also new
experimental possibilities for studies of the surface en-
ergy anisotropy.

Consider a crystal with horizontal (zy-plane) facet in
a cell with vertical (z-axis) walls. There is some contact
angle due to the difference € of the crystal-wall and the
liquid-wall energies. It results in bending of the crys-
tal surface near the walls on the scale of capillary length
~ 1 mm (Fig.1a). We assume the cell being large enough
in y-direction (along the wall). Then one can neglect
the effects of shape distortion in the y-direction. Equi-
librium crystal shape Z(z) corresponds to the minimum
of the sum of the surface and the gravitational energies
for a given crystal volume

o Z(z)
/%dw + //0 (097 — N)dzdz, (1)

Iucema B MATP® Tom 83 BHIM.9-10 2006

(b) (©) W/%z\ (d) Z,
7,

Fig.1. Crystal shape evolution under the wall inclination:

(@) =0,(b) Y <9, (c) Y- < <Yy, (d) ¥ > Py

where « is the crystal-liquid boundary energy, an angle
0 defined by tanf = 9, Z, p is the density difference of
crystal and liquid, A is the Lagrange multiple. Varia-
tional procedure gives

(a+a")cos08,0 — pgZ + A =0, (2)

where the prime denotes angular derivative. At the cell
wall 8 = 6y, where 6y is a solution of the equation
o' cosfy + asinfy = e. For the wall inclined by an angle
1 (Fig.1) this boundary condition should be replaced by

o'(Bo) cos(fo + 9) + a(bo) sin(fo + ¥) = €(¥).  (3)

It would give a continuous dependence 0y(%) if o and
€ were smooth functions. In fact, reality is complicated
by the o' discontinuity. At small # we have

a(f) = agcosf + '%| sin @] + %|0|3, (4)

where h is the step height and the last term is due to the
step-step interaction (electrostatics [7], elasticity [8] and
thermal fluctuations [7, 9]). From (3) and (4) we find

00:i\/7c§s¢v (:teq:aosinz/;—%cosd)). (5)

These two cases are presented in Fig.1b,d. However, in
the interval ¥_ < 9 < 94 defined by

(aosinthy — e(v+))h = £8 cos (6)

the solution (5) has no sense. When the inclination ap-
proaches this interval both from smaller and bigger an-
gles the asymptotics g o< |t — 11 |'/? is valid. Inside
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the interval meniscus vanishes completely and the facet
touches the wall (Fig.1c). It is easy to show that this
state is stable. Indeed, the change of the state would
be possible only via formation of a ”positive” (shift up-
ward) or “negative” (shift downward) atomic terrace of
macroscopic width L <« R, where R is a characteristic
size of the crystal. It costs an energy

eh

cos Y

per unit length of the terrace, where +(—) corresponds
to a “positive” (“negative”) terraces respectively. The
last term is small with respect to the others because
A~ ag/R. We see that §EL >0 inside the interval
(W—,¥4).

If the crystal orientation dependence of € can be ne-
glected, from (6) we obtain

SE. =B+ :Faohtand)-l-%th:F)\hL

i =

B = aphtan 5

Thus, we have the new means of finding the value of 3,
because ag is known with reasonable accuracy [10], and
angles 91 can be measured directly. Important advan-
tage of this method: it allows to avoid the problem of
the metastability. Indeed, the cases 1) = ¥4 correspond
to the wetting point of the wall by “negative” and “posi-
tive” terraces respectively (t.e., Ex — 0). It means that
the terraces can be formed without any macroscopic bar-
riers.

Note, that instead of tilting the cell wall one can also
control the boundary condition (3) by electric field [2].

Further we consider a new possibility to measure
a(0). The first integral of equation (2) is:

a'sin0—acos€=%z2—/\Z+C, (7

where C'is a constant. Let Z = 0 at the level of the facet.
Then from (7) we have C = —ag. Worthy to mention
that the condition (3) is valid for the juncture line be-
tween curved surface and the facet. In this case € = ay,
and the boundary condition is satisfied if the juncture is
smooth. Let us find the function Z = Z(6) from (7)

2
Zy = A + \/<i) + i(ao + o/ sinf — acosB).
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An interesting situation arises in the case of asymmet-
ric conditions. Suppose that Z has opposite signs at
the right and left cell walls (Fig.2). The only possibil-
ity to have the same level of the facet Z = 0 on both

“

Fig.2

sides is to fix Lagrange multiple A = 0. Under this condi-
tion, the meniscus becomes rigidly determined, with no
dependence on the crystal size. This shape fixation phe-
nomenon exists for large enough crystals when the facet
is presented. The value of facet size does not contain
essential information if A = 0, but a small angle asymp-
totics of the crystal profile

99 | 3
Zy=+—"|z
R
gives the step-step interaction constant v. In general case
consider the Eq.(7) as an ordinary differential equation
for the function a(f). One can measure the function

Z = +Z7Z.(6), and put the data into Eq.(7). The inte-
gration over § > 0 gives
- z(8)
a= (ag—@Zz) cosf + C’+gg/ Zdx | siné,
2 2(0)

here C is nothing but 8 /h, just because there is no other
nonanalytic term o |f| at § — 0.
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