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Two-stream-like mechanism of zonal-flow generation by Rossby waves
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It is shown that the small-scale Rossby waves in shallow rotating fluid, placed in gravitational field, can
generate large-scale zonal flows by means of a two-stream-like mechanism. This mechanism is revealed in the
conditions when the Lighthill instability criterion is not satisfied.
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According to [1] and references therein, wave prop-
erties of shallow incompressible rotating fluid placed in
gravitational field are similar to those of magnetized
plasma. Such a similarity serves as a prerequisite for an
interchange by conceptual and methodical achievements
between the hydrodynamics and plasma physics. His-
torically, this interchange has started with establishment
of the fact that the hydrodynamic solitary vortices ob-
served in nature and in the laboratory can be considered
as models of wave processes in magnetized plasma and
that, vice versa, there exists a possibility of the plasma
simulation of hydrodynamic vortices (see in detail [1 -
4]). Recently the interplay of hydrodynamics and plasma
physics is shifted to the problem of large-scale zonal-flow
generation by small-scale waves which, in the case of hy-
drodynamics, are the Rossby waves while, in the case of
plasma physics, — the electrostatic drift waves [5—7].

Studying the zonal-flow generation by the Alfvén
waves in magnetized plasma, [8] has pointed out that,
in addition to the standard mechanism of such a gener-
ation, revealed in the single-pump-wave approximation
(see, e.g., [9]), there is a new generation mechanism re-
vealed in the case of two-humped spectra of the pump
waves [9], which has been called in [8] the two-stream-
like-mechanism. The goal of the present paper is to show
that this zonal-flow generation mechanism is predicted
also for the Rossby waves.

Let us start with the Charney-Obukhov equation for
the Rossby waves in a shallow rotating fluid in a gravi-
tational field. Turning to [1], this equation can be pre-
sented in the form (see also [5] presenting it in the di-
mensionless form)
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Here h = H /Hy, H is the fluid depth, Hp is the equi-
librium fluid depth, rg = (gHo)l/ 2 / f is the Rossby-
Obukhov radius, g is the gravitational force, f is the
Coriolis parameter, Vg = — (gHy/ f)dInf /dz is the
equilibrium Rossby velocity, Vp = (g9/f) [VH x z] is
the “cross-field drift velocity” components, y is the
“drift” direction, = is the “radial” direction, i.e., the
direction of fluid inhomogeneity, z is the unit vector
along z.
We analyze our starting equation (1) by the
convective-cell method [10]. We represent
h=h+h+h. (2)
Here 71, ﬁ, and h describe the primary modes, the sec-
ondary small-scale modes, and the zonal flow, respec-
tively. The function h is taken in the form

h = hgexp (—iQt + ig,z) + c.c., (3)

where (2 and g, are the frequency and radial mode num-
ber of zonal-flow, respectively, c.c. is the complex con-
jugative. The function h is presented as

h= Z Vu_ (k)exp (ik - r — iwt) +
Kk

+h_(k)exp (—ik - r +iwt) ], (4)
where w and k are the frequencies and wave vectors
of the primary modes, h_(k) = 71*+(k), “x” means the
complex conjugative, the summation is performed over
all totality of the primary modes. At last, the function
h is given by
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Here h (k) are the side-band amplitudes, wy = Q + w,
ki = (go % kg, +ky).

It is assumed that ¢, < k., which is typical for the
existing theory of zonal-flow generation [5].

For the primary modes, starting equation (1) yields
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Here k = k7 + k2, wgr = k, Vg is the frequency of the
Rossby waves in the long-wavelength limit, 73k < 1.

Taking the zonal-flow part of (1), one has (cf. eq. (17)
of [5])

(7)
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Here (---) is averaging over the small-scale oscillations.
Allowing for eqs. (4) and (5), eq. (7) reduces to

mﬁo:flfiszk 2k, (heh +h By)+

+ g (h+h_ - h_h+) } . (8)

Now we take the side-band part of (1) arriving at
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rrkl
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(9)

Here Vo = —i (gHo/ f) gzho is the zonal-flow part of the
cross-field drift velocity, k , = (go + k) + k2,

Dy =wi Fwr/(1+rgkly). (10)

Using inequalities @ < w, ¢, < k, and allowing
for (6), we obtain

D =D + DY, (11)
where
DO = —qV,(k 12
4 qz g( )a ( )
1) !
=¥ V,¢l/2 (13)

Here V,(k) is the radial group velocity of the primary
modes defined by
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= 0V, / Ok, is its derivative, so that

V= 2riw

— R (143K
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—4rgk2).  (15)

Substituting (10) — (13) into (9), one has

he =AY + 2L, (16)
where
ﬁ( y kyVoﬁir%tkﬁ_ (17)
* (1 +7r5k1) (- ¢. V)’
o kyVoﬁir%{ki Vi B 2r%kquD$)
T (Q-q.V,)? | 2 1+r2Kk2
(18)

Substituting (16) —(18) into (8), we arrive at the
zonal-flow dispersion relation

)
1+ =0, (19)
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In contrast to (19), in [5] and [7] the case of single
primary Rossby wave was considered. In this case (19)
reduces to

(Q - g.V,)? = —F(ko), (21)

where ko is the wave vector of this mode. Transiting
to the dimensionless form, one can see that (21) is the
same as eq. (19) of [5] describing zonal-flow generation
by the Rossby waves.

In [7] only the short-wave length limit of the Rossby
waves and zonal flows was studied, i.e., the case
(r%q2, r3k%) > 1. At the same time, the ratio g, /k.
was assumed to be finite. Therefore, in order to com-
pare our zonal-flow dispersion relation with that of [7],
one should take r%g? in (21) to be large and consider
the limit g, /k; — 0 in [7]. Then one obtains that (21)
is the same as eq. (12) of [7].

For not too large k, [5],

k2<k/3+1/r%, (22)
eq. (21) reduces to
QZ

v (23)
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where Q2 = F(ko) > 0. The roots of this equation are
complex, ImQ # 0. One of them has positive imagi-
nary part, Im > 0. Then one deals with the standard
mechanism of zonal-flow generation similar to the nega-
tive mass instability of the linear theory [11] (the value
Q2 plays the role of “minus of squared Langmuir fre-
quency”).

Turning to (15), one can see that the condition of
this instability mechanism can be presented in the form

V)/w <0. (24)

It was noted in [5] and [7] that this condition is the
same as the Lighthill criterion for modulation instability
in nonlinear optics [12].

If the Lighthill instability criterion (24) is not satis-
fied,

V)/w>0, (25)
i.e., for
k2> k2/34+1/r, (26)

one has F(kg) < 0. Then, in the single-pump-wave case
(19) leads to the zonal-flow dispersion relation of the
form

- % (27)
[Q — g, Vy (ko))

where Q2 = —F (k) > 0. Turning to the linear theory
of plasma instabilities [13], one can see that (27) is ana-
logue of dispersion relation for a single cold beam. Its
roots are real, ImQ2 = 0. Meanwhile, it is well-known
[13] that the stability properties of the system are rad-
ically changed if, instead of the single beam, one deals
with two beams. Then the two-stream instability can
take place.

Such an analogy leads to the idea that in the case of
two pump wayves, i.e., for

F(k) = F(k1)0kk, + F(k2)dkx,, (28)

a two-stream-like mechanism of zonal-flow generation
can be revealed. In this case, instead of (27), one has
the dispersion relation

02 02
_ L 20, (29
(Q - qngl) (Q - Qngz)
where (Qf, 93) = —[F(ki), F(ka)], Vo = Vy(ka),

i = 1,2. Turning to [14], one can see that for not too
large g., one of the roots of this dispersion relation has
ImQ > 0. Such a root describes the two-stream-like
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generation of zonal flows by the Rossby waves. More
detailed analysis of the family of two-stream-like zonal-
flow instabilities in magnetized plasma can be found
in [8].

We have shown that, for two-humped spectra of the
primary Rossby waves, a new, two-stream-like mech-
anism of zonal-flow generation can be revealed in the
conditions when the Lighthill instability criterion is not
satisfied. This results complements the picture of zonal-
flow generation by the Rossby waves in the Earth’s at-
mosphere predicted in [7].

In accordance with the ideas of [2] and [3] on similar-
ity between wave properties of rotating shallow fluid and
those of magnetized plasma, it seams to be reasonable to
organize shallow-fluid experiments on simulation of the
two-stream-like generation of zonal flows in magnetized
plasma. At the same time, allowing for the ideas of [4]
and [14], one can suggest that our results will favor fur-
ther development of laboratory simulation of nonlinear
phenomena in galaxies.
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