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We study four-point correlation function in Liouville field theory. If one of the fields is degenerate, such
a function is described in terms of Coulomb integrals. We find some non-trivial relations on these integrals,
which can be used to obtain new exact results in conformal field theory. In particular, we calculate four-point
correlation function in minimal quantum gravity. The result agrees with the results obtained recently by

different methods [1, 2].

PACS: 11.25.Hf

Coulomb integrals play an important role in theo-
retical physics and mathematics. They were actively
studied after 1984, when the modern approach to the
two-dimensional conformal field theory (CFT) was for-
mulated [3]. In particular, any multipoint correlation
function in minimal models of CFT are expressed in
terms of Coulomb integrals. Using these integrals, the
structure constants in rational CFT describing the crit-
ical points of many interesting statistical systems [4, 5]
and in SU(2) WZW models [6] were calculated exactly.
Also, they have application in the non-rational CFT like,
for example, Liouville and Toda field theories and in per-
turbed CFT.

We start by recalling some basic facts about Liouville
field theory (LFT)

L= - (@up) + ™. 1)
47

This theory has drawn a lot of attention mainly because

it plays an important role in quantization of strings in

non-critical dimension [7]. LFT is a conformal field the-

ory with central charge cr, parameterized in terms of

coupling constant b as

Cr, = 1+6Q2, (2)

with Q = b+b~! and p is the scale parameter called the
cosmological constant. Basic objects in this theory are
the exponential fields

Va(z,2) = e, 3)
which are the primary fields of the Virasoro algebra with
the conformal dimensions Af(a) = a(Q — a). Here z is
complex coordinate on a plane. Below, for simplicity, we
will neglect z dependence of the fields. The important
property of LFT is that the fields V, and Vg_, have
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the same conformal dimension and really represent the
same conformal field. It means, that they are related by
a linear transformation

Vo = R(a)Vg-a; (4)

with function

(rpy (b)) @2/
b2

v(2ba — b?)

Rla) = Y2 —2a/b+1/8%)’

(5)

which is known as the reflection amplitude, here and
later v(z) = I'(z) /T'(1 — z). Relation (4) should be un-
derstood, as a set of identities on correlation functions.

It was noticed in [8], that any multipoint correla-
tion function (Vq, (1) ... Vay (2n)) exhibit a pole in the
variable @ = Y aj if @ = Q — nb with a residue being
expressed in terms of the integral of correlation function
of the free field exponents. Namely,

n

(=n)
n!

res X

a=Q—n

></(Val(ml)...VO,N(:z:N)Vi,(tl)...Vb(tn))odzt, (6)

(Vs (@1) .- Van () =

here (...)o denotes the correlation function of the expo-
nential fields V,, where ¢ now is free massless field and
d?t =[], d*tx- In the case of three points, integral in
the r.h.s of (6) reads?

(=)™
n!

% / I it~ e — 1|~ D))~  d2t, (1)
k

In(alaa2aa3) = X

1)Using projective invariance, one can set £; = 0, z2 = 1 and
T3 = 00.
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where

n

H [t; — t5[. (8)

i<j

Dy(t) =

Integral (7) was calculated exactly in [4]. Here we give
the different derivation (simplest to our knowledge),
based on the integral relation [9], which will be useful in
the following

n n+m+1

/D H H yi — ;" d’y =

n+1 X
_ HJ 1 Y1 +pj) H|ti _tj|2+2pi+2pj %

mn+m+1
x—/’D

U; — tj|_2_2pj d2u. (9)
Namely, one should apply identity (9) for m = 0 from
the right to the left and substitute

i= 1 =

Do (t) > = Dat) (,j — :)! Y/T(I?ZI;; 8
/Dn1 H'yz_t| 2-26* (10)

After that, integral over ¢ can be again calculated using
Eq. (9). The remaining integral over y will be of the
same type as (7), but with lower number of integrations.
As result, we derive functional relation

In(al,ag,ag) =

_ ( —mp ) y(=nb?) .
v(=b?) ] 7(2baa)y(2bas)y(2bas+(n—1)b?)
X In,l(al +b/2,a2 —|—b/2,a3). (11)

Repeating this procedure n times, we obtain that

(=0 +1)b?)
v(2bay + jb2)y(2bas + jb2)y(2bas + jb?)”

XH

Functional relation (11) can be used to continue
I,(01,a2,a3) to the non-integer m (the number of
screenings V;). Namely, one can substitute

n=(Q —a—ay—asz)/b (13)

into Eq.(11) and consider it, as a functional relation for
the three-point function C(aq,as,as), which satisfies
the condition that

(12)

_r(gs bC(al,ag,ag) d=ef In(a1,02,03). (14:)

Functional relation (11) together with residue condition
(14) allow us to find this quantity. An analytical expres-
sion for C'(aj, as, a3) was proposed in [10, 11]

(Q—o)

Cla1,a2,03) = [ﬂu7(b2)b2_2b2] X
T'(0) [Ty Y (200)
T(a—Q) szl T(a — 204) ’

here Y(z) is entire selfdual with respect to b — b~!
function satisfying functional relation

X

(15)

T(z + b) = y(bz)b' 2" T () (16)

and defined by the integral
Cdtr(Q

logT(z) =] Z[(% -

w1 = F[(3

This function is symmetric Y(z) =
zeros in points

)2 sinh? (— — m) %
z) — —]
sinh % sinh 2ib

(17)
T(Q — z) and has

—mb—nb1,

a::{Q+ bt mb 1 m,n=0,1,2,... (18)
mb+nb~ ',

It is easy to see, that function C(ay, as, a3) satisfies re-
lation (11), where n is defined by Eq. (13).

In the case of four points, integral in the r.h.s. of (6)
has much more complicated analytical structure. The
situation is simplified in the case, when one of the pa-
rameters ar, = —mb/2 with m = 0,1,2,... For these
values of parameters, field V_,,;;/2(2) is degenerate at
the level m + 1 and satisfy differential equation of the
same order in each variable z and Z. If the condition
—mb/2 + > a + nb = Q is satisfied, this correlation
function possesses a pole with residue

(n) _ (_M)n 2mbaz |, _ 1 2mbaz
I (e, a2, a3]2) = =7 |z| |z -1 X

n
2 2
x [TL el 1] 2P0 D, % (e, (19
k=1

here n is the number of screening fields Vj, which appear
in Eq. (6). One can reduce the number of integrations in
Eq. (19) by multiple application of relation (9). Namely,
it can be shown, that integral (19) satisfy the following
remarkable property?

|z 1|_2mbaz‘]'7(r?) (a1,027a3|z) =

Q7 (o1, 02, 03)| 2| 72081 | z—1| 720082 (M) (G| G, Gis |2),
(20)

|—2mba1 |Z _

2)For simplicity, we suppose, that n > m.
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with @& = oy + (n — m)b/2 and

T )b?)

<11 Y=(@G+m+1
o v(2bay + jb2)y(2bay + jb2)y(2bas + jb?)’

(21)

Now, n appears in the integral Jim (a1, a2, as3|z) as a pa-
rameter and we can easily perform continuation to the
non-integer n. Continuation of Q7% (a1, a2, a3) should be
done in a such a way, that

AY
res QO (01, az,03) = ( 15')

Qr a1,02,03).
a=Q—nb+mb/2 m( ’ ’ )

As a result,we obtain the following expression for the
four-point function with one degenerate field in LFT

<V_me(Z)Va1 (O)Vaz (l)Vaa (OO)> = Qm(alva%a3) X
X |z|2mbet|y — 12mbaz 3 (A, B,Clz), (22)

where function J,,(4, B, C|z) defined by

JIm(4, B,C|z) =
/D 22 H |tk|2A 2B| Z|2C dzt, (23)
with
A=b(a—20q4 —Q+mb/2),
B= b(a—2a2—Q+mb/2)
(Q + mb/2 - a) ’

and normalization constant Q,, (a1, as,as) is

(Q—a—mb/2)
b

Qm(alaa%a;;) = I:T(',U/Y(bz)b2_2b2 %

T(—mb) [T, T (20)
Q— )3, T(a — 204 + mB)’

here a = a1 + as + as.

Up to the normalization constant Q7 (a1, a2, as) the
expression for this integral was derived in [12] from the
condition, that this function satisfies m + 1-order dif-
ferential equation. Function J,,(A4, B, C|z), defined by
Eq. (23), possesses many remarkable properties. Some
of them can be derived from the reflection relation (4)
applied to the one of the fields V,:

(=)™
m!

X T(a_ (24)

o 5() _ relation (reflection a3 — Q — a3),
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Jm(AaBaC|z) = Gm(AaB1C) Jm(AIaBIaCI|z)1 (253‘)

with

A'=-1-B+(m-1)b, B=—-1-A+ (m—1)b,
C'=1+A+B+C—(m-1)b.

o 5 — relation (reflection oy — Q — 1),

m(4,B,C|z) = Gm(4, B, C) |2[>™C"~B) x

m(A+B—C',C" B'lz), (25b)

e (1) — relation (reflection s — Q — ),
Jn(4,B,C|z) = Gn(A,B,C) |z —

xIn(C',A+B—C' Alz).

1|2m(C'—A) X

(25c¢)

Constant G, (4, B, C) is the same in all relations (25)
Gn(4,B,C) =

_ H'y (1+ A —jb?)y(1 + B — jb*)y(1 + C — jb?)
Y2+A+B+C—(m—1+j)b?) )

Relations (25) are useful for analytical continuation and
for calculation of different Coulomb integrals.

Now we apply Coulomb integrals for the calcula-
tion for the four-point correlation function in the mini-
mal Liouville gravity, which is described by generalized
minimal model (GMM) [1] of CFT with central charge
Cyu = 1—6(b—b_1)2, coupled to the LFT in such a way,
that ¢z + cpr = 26. GMM theory includes a continuous
number of primary fields ¢, with conformal dimension
Ap(a) = ala +b—b"1)%. These models were stud-
ied in [1], where more detailed description of GMM as
well as Liouville theory can be found. Here we choose
normalization of the fields ®, in a such a way, that

(Bap(2)Bazp(0)) = N72(a) 2| *AM(@=0) - (26)

N(a) = (ruy(8?)~ % ek

The main problem in minimal Liouville gravity is to
evaluate correlation function of operators U, = ®4_pV,,
which have conformal dimension A (a)+Ap(a—b) =1
and hence (1,1) form U,(z)d?z can be integrated in an
invariant way. Integrated N-point correlation functions
are invariant objects, which depend only on parame-
ters ag. Due to the group of diffeomorphisms SL(2,C),
which is the symmetry of the theory, the number of inte-
grations in N-point correlation function can be reduced

[v(2ab — b%) (20"

3)We note, that central charge Cjs and conformal dimension
Ap(a) can be derived from the corresponding values Cr and
Ar (o) by the substitution b — —4b and o — ic.

5*
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to N —3. Namely, we can fix the coordinates of any three
fields at the points 0, 1 and co. This fact is well known
in string dual models, where similar integrals appear in
the tree string amplitudes. Three-point correlation func-
tion of the fields U,, does not contain integration and is
rather simple [1]:

(Ua (0)U; (1)U (00)) =

Mh—\

(v(®*)y(6 72 - 1)) 24,
(27)

here

Y)Y -1).  (28)

Four-point function will have one integration.
We define (following Ref. [1, 2]) four-point function
m (a1, az,a3), which contains one matter field @,,s/2,
degenerate at the level m + 1

(2)Ua; (0)Ua;, (1)Uas (o). (29)

Corresponding matter four-point function satisfies dif-
ferential equation of the order m + 1 and can be also
represented by the m dimensional integral similar to the
Liouville case (23)

< "‘T( ) a1—b(0)q)az—b(1)q)a3—b(°o)):

= A, (al’az,a3)|z|2mb(a1 b)lz 1|2mb(asz) %

B A 2
« f @ T2 = 1P - 29000, (a0

where
A=b(a— 20 - Q- (m—20/2),
B=b(a—2as—Q— (m—2)b/2), (31)
G =—b(a—Q+(m—2)b/2),
and

(e—Q+3mb/2+4b)
I

Am = 'L;;—m [wuﬂ/(bz)b%zlﬁ] X
T(o— Q+ %3°) [They Yo — 204 — B)
T((m +2)b) [T5—; T(20)

here a = a1 + as + as.

Integral for four-point function in GMM with one de-
generate field ®,,;/2 and three arbitrary fields ®,, can
be obtained by substitution o — ia and b — —ib into in-
tegral for four-point function in the Liouville theory (23),
while normalization factor A,,(a1,a2,a3) can be de-
rived, following the lines of calculation of Q. (a1, a2, a3)
and taking into account normalization condition (26).

o (32)

One also has to remember, that variables a3, in Eq. (30)
are shifted: ap — ap — b.

Four-point correlation function of the corresponding
Liouville fields

(Vim+2)5/2(2) Vi, (0) Ve, (1) Vi (00)) (33)
is more complicated. It simplifies, however, when
e=(m+2)b/2+a+nb—Q — 0. (34)

for this values of parameters, matter four-point function
(30) exhibits a zero. In the limit ¢ — 0 first T function
in (32) has asymptotic

mb, b)) 1 (p)
a—-Q+ — ,
te-Q+3)- 132 v(=jb2) T(e)

(35)

while Liouville four-point function (33) possesses the
asymptotic, which can be expressed in terms of n-
dimensional integral (23):

(Ve (2)Vas (0)Vis (1)Vag (00)) =
— F(e)%|z|*2ba1(m+2)|z 1|72ba2(m+2) x

X Jn(—2bay, —2bas, —(m + 2)b%|2). (36)

Multiplying (30) and (36), performing limit ¢ — 0 and
integrating over z, we obtain that

N

Q
T (a1, 02,a3) = "
n+m
x I v(2bas + jb%)v(2baz + jb°)y(2bass + jb*) x
j=0
m+1 2 n+1 2
7(b)> (7(—1)))
X - - Jom (01, az,a3), (37
j:Hl (V(Jbz) Jl;ll A=y ) Trmlon ozl G
where

Jnm(al,a2,a3):/dzzd2t d2s’I.j,n(t)m’z’l.)n(s)’2"2 =

|—2mb2—4ba1 |z — 1|—2mb2—4ba2 %

S |Z
s 2 2 2
XH|ti|_2(n+m)b —4ba1|ti_1|—2(n+m)b —4ba2|ti_z|2(n+2)b

i=1

1|—4ba2|3i _ Z|_2(m+2)b2_ (38)

n
x [ Isel =1 ]s: —
i=1

The integral J,,,,, (a1, @2, a3) can be calculated exactly.
It is useful to apply relation (25a) to the n-fold integral
over variables s and similar relation to the m-fold inte-
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gral over variables ¢ (in the last case, with substitution
b2 — —b?), and rewrite J,.n (a1, a2, a3) as:

m+1 n+1l
) = H v(56%) T v(=ib?) x
i e
v(2bay + nb?)y (Zbaz + nb?)y(2bas + nb?) 5
T (362)y(—4b?)
n+m

X H [v(2ba; + jb%)v(2bas + jb%)y(2basz + jbz)]f1 X
=0

X Hpm(a1 +nb?/2, s + nb?/2,a3 + nb?/2), (39)

Jnm(01, 00,03

here H,,,(a1,as,a3) is the integral, which is evidently
symmetric under the substitution n <+ m and b*> — —b?

H,m(a1,a2,a3) = /dzz d?s d?t Dm(t)%an(s)*zbzx
x |z|—4ba1+2(n—m)b2|z _ 1|—4ba2+2(n—m)b2 x
m 2 2
XH|ti|_2+4ba2+2b |ti_1|—2+4ba1+2b |ti_
=1
n

x H|si|72+4ba272b2|si_1

i=1

2
Z|—2+4ba3+2b x

|72+4ba172b2 |72+4ba372b2

|si—z )

here a; +as+a3=b"1—(n—m)b. (40)

Integral (40), despite its complex form, has very simple
analytical structure in parameters a;. Namely, it has
only simple poles in the points 2bay = 1,2, ... and sym-
metric with respect to a; <+ a;. These properties permit
to calculate it exactly with the result

Hnm(al,az,ag) = 7rm+"+1(m + 1)' (n + 1)' X
17 v (6%)y(— ) 1

Y(=0*)my(b*)™  v(2ba1)y(2baz)y(2bas)”
(41)

Using Eq. (39), we obtain the following expression for
the integral

Jnm (a1, @, a3) = 7™ x

m+1 ih2 ntl — 'b2
x (m+1)! (n+ 1) ] (77((91)2))) Hl (Ty((_'?bz))) X

Jj=1

n+m

< 1k

(2bay + jb2)y(2bas + jb%)y(2bas + jb%)] -

(42)

Taking into account Egs. (42) and (37), we obtain the
final expression for the four-point function (37):

2]m (alaa2)a3) = _ﬂ-Q (1+n)(1 +m) (43)

Mucema B AT Tom 84 BeIm. 9-10 2006

Now we substitute n +1 =
a=>),oin Eq. (43

(@ — a — mb/2)/b, with
). As a result, we obtain

Y (a1, a2, a3) = 71 (1 +m) (a+mb/2-Q).

(44)

The answer (44) is in complete agreement with the re-
sults of Ref. [1, 2] in the domain of convergency of the
integral Jp,;m (a1, a2, a3):

a—2ap >mb/2, a; < Q/2—mb/2. (45)

We note in the conclusion, that using our method,
we can consider also the dual case, where one of the Li-
ouville fields is degenerate at the level m + 1 and hence
Liouville four-point function is given by Egs. (22)—(24);
while the screening condition & —mb/2 = Q + (n+2)b s
satisfied for the matter correlation function, which due to
this condition can be expressed through n-dimensional
integral. In this case, all calculations can be done in the
same way. The integral for the dual four-point function

2~3111((311,042,013) =
— [ 26V (00U ()T ()2
is convergent in the domain:

a—2a, < Q—mb/2, a; > (m+1)b/2, (46)
and can be calculated exactly. The result, which can be
expressed in terms of function X,,(a;,as,a3), defined
by Eq. (44), with the substitution

Yo, az,03) = B_p2(e1, 2, 03). (47)

We suppose to study four-point correlation functions
Y (01, a0,a3) and £,, (a1, az, as) outside the domains
(45) and (46) in the future publication.
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