Pis’'ma v ZhETF, vol. 84, iss. 11, pp. 700 — 702

© 2006 December 10

Kelvin-wave turbulence generated by vortex reconnections
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Reconnections of quantum vortex filaments create sharp bends which degenerate into propagating Kelvin
waves. These waves cascade their energy down-scale and their waveaction up-scale via weakly nonlinear inter-
actions, and this is the main mechanism of turbulence at the scales less than the inter-vortex distance. In case
of an idealised forcing concentrated around a single scale ko, the turbulence spectrum exponent has a pure
direct cascade form —17/5 at scales k > ko [2] and a pure inverse cascade form —3 at k < ko [9]. However,
forcing produced by the reconnections contains a broad range of Fourier modes. What scaling should one
expect in this case? In this Letter I obtain an answer to this question using the differential model for the
Kelvin wave turbulence introduced in [8]. The main result is that the direct cascade scaling dominates, i.e. the
reconnection forcing is more or less equivalent to a low-frequency forcing.

PACS: 67.40.Vs

1. Differential equation model for Kelvin wave
Superfluid turbulence, when excited at
scales much greater than the mean separation between
quantum vortices, behaves similarly to turbulence in
classical fluids at such large scales in that it develops
a Richardson-like cascade characterised by Kolmogorov
spectrum [1]. However, quantum turbulence starts feel-
ing discreteness when the energy cascade reaches down
to the length-scales comparable to the mean inter-vortex
separation distance. In superfluids near zero tempera-
ture, there is no normal component and, therefore, there
is no viscid of frictional dissipation in the system. Even
though part of the turbulent energy is lost to sound radi-
ation during the vortex reconnection processes, the ma-
jor part of it is believed to be continuing to cascade
to the scales below the inter-vortex separation scale via
nonlinear interactions of Kelvin waves [2—7]. Following
[8] I will refer to this state characterised by random non-
linearly interacting Kelvin waves as “kelvulence” (i.e.
Kelvin turbulence). Kozik and Svistunov [5] used the
weak turbulence approach to kelvulence and derived
a six-wave kinetic equation (KE) for the spectrum of
weakly nonlinear Kelvin waves. Based on KE, they de-
rived a spectrum of waveaction that corresponds to the
constant Kolmogorov-like cascade of energy from small
to large wavenumbers,

ng ~ k=175, (1)

turbulence.

Because the number of waves in the leading resonant
process is even (i.e. 6), KE conserves not only the to-
tal energy but also the total waveaction of the system.
The systems with two positive conserved quantities are
known in turbulence to possess a dual cascade behav-
iour. For the Kelvin waves, besides the direct energy

cascade there also exists an inverse cascade of waveac-
tion [9],

ng ~ k3. (2)

Numerical confirmation of the direct cascade spectrum
(1) was given by Kozik and Svistunov [7] who forced
the system at the largest scales. To date, there has been
no simulations with forcing concentrated at the smallest
scales and, therefore, there is no numerical confirmation
of the inverse cascade spectrum.

On the other hand, in superfluids kelvulence is gener-
ated by vortex reconnections which is not concentrated
in either large or small scales, but it has a continuous
k-space distribution. Indeed, a sharp bend on the vortex
line produced by a reconnection has spectrum ny ~ k4.
What scaling should we expect in kelvulence pumped by
the reconnections, — forward cascade, inverse cascade or
a mixture of thereof? In the present paper I will answer
this question using a differential approximation model
(DAM) introduced in [8],
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where k is the vortex line circulation, C' is a dimension-
K

less constant and w = w(k) = 4—k2 is the Kelvin wave
T

frequency (we ignore logarithmic factors). Here F}, and

Dy, are the terms describing forcing and dissipation of

Kelvin waves.

In absence of forcing and dissipation, F, = Dy =0,
DAM preserves the energy

E = /wl/zndw (4)
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and the waveaction
N = /w_1/2ndw. (5)

In this case equation (3) has both the direct cascade so-

lution (1) and the inverse cascade solution (2). It also
has thermodynamic Rayleigh-Jeans solutions,
n=T/(w+n). (6)

where T and p are constants having a meaning of tem-
perature and the chemical potential respectively.

Now let us assume that the forcing is due to the vor-
tex reconnections so that

F = )‘w_za (7)

where ) is a constant proportional to the mean frequency
of reconnections. For now let us ignore the dissipation
by putting Dy = 0. Dissipation of kelvulence is due to
either sound emission [8] or due to a friction with the
normal component [10]. This dissipation acts at very
short scales and I will discuss its role in the end of this
paper.

2. Directions of the energy and waveaction
First of all, it is instructive to study di-
rections of the energy and the waveaction cascades. For
this, let us re-write equation (3) in two different forms:
a continuity equation for the waveaction,

cascades.

= -8 = —2w'*d,n, (®)
and a continuity equation for the energy
wi = —Oe = —2w/%0,¢, (9)

where 77 and € are the spectral fluxes of the waveaction
and of the energy respectively,

n= —ZR%BQ,R, (10)

and
€= 2HLIO(R—wc’)wR), (11)

with
R= 7L6(4121/26—2l (12)

Ow?n’
Note that 7 = 0 and € =const on the direct cascade solu-
tion (1) and, respectively, n =const and € = 0 on the in-
verse cascade solution (2). More generally, on power-law
spectra ng = k¥ we have n > 0 for —o0 < v < —17/5
and for —1 < v < 0 (and n < 0 otherwise), whereas
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€ >0 for —0o < v < —3 and for -1 < v < 0 (and
1 < 0 otherwise). Particularly, if we take spectrum of a
sharp reconnection-produced bend, n;, = k~*, then both
energy and waveaction cascades are direct, n > 0 and
€ > 0. This fact is an indication that kelvulence forced
by reconnections should be dominated by the direct cas-
cade rather than the inverse cascade scalings. How-
ever, the steady state spectrum will be different from
n; = k~* due to the redistributions of the waveaction
and the energy by the nonlinear wave interactions. Be-
low, we will study such a steady state using a reduced
version of DAM.

3. Reduced DAM for Kelvulence forced by re-
connections. In principle, one can study steady states
on kelvulence forced by reconnections using DAM as
given by equation (3). However, it is impossible to find
a general steady state analytical solution in this case
and one needs to resort to numerics. On the other hand,
most essential details and a full analytical treatment is
possible using a reduced version of DAM,

!

n= %w_l/zaw (n4w86w(nw3/2)) +Aw2, (13)
where C' is an order-one constant. In this version
(for A = 0) DAM also conserves both the energy and
the waveaction and describes their respective cascade
states (1) and (2), but it no longer has thermodynamic
Rayleigh-Jeans solutions (6). Note that the energy and
the waveaction fluxes in this model are respectively

Cl
~3.10 nwtd, (nw®'?), (14)
and
!
n= ~ 5.0 n*w?/%9, (nw17/10). (15)
Integrating equation (13) once, we get
€=¢€— Aw /2, (16)

where € is a (positive) constant having a meaning of the
asymptotic value of the energy flux at large frequencies.
Integrating one more time we get

10\ /% 9 1/5
n= (—0> kw32 (eow_l — ?)‘w—3/2 — 170) s
(17)

where 79 is a (negative) constant having a meaning of
the asymptotic value of the wavenumber flux at large
frequencies. If there is no additional (with respect to
the reconnections) forcing then 79 = 0, so that

1 1/5 9 1/5
n= (E(D k2w 17/10 (eo — ?Awl/2> . (18)
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At large frequencies, this solution asymptotically ap-
proaches to the direct cascade scaling (1). The in-
verse cascade scaling (2) does not form in any fre-
quency range. One can relate the asymptotic value of
the energy flux to the minimal frequency of the system
Wmin = kk2;, = k(2 /L)?, where L is the length of the
vortex filament. This relation follows from (16) and a
the condition that the flux € is zero at wmin, i.e.
€0 = w2, (19)

At the minimal frequency, the spectrum tends to a finite
value

n(wmin) = (10A/3C")"° k2w 3% (20)
The spectrum (18) is less steep near wmi, than in the
free-cascade range at large w, but the slope remains neg-
ative for all w (i.e. there is no maximum).

4. Discussion. In this paper, I studied the Kelvin
wave turbulence (kelvulence) generated by the vortex
reconnections and evolving due to nonlinear wave inter-
actions. For this, I used the differential approximation
model (DAM) of kelvulence previously introduced in [8]
and its reduced version (13). The stationary solution of
this model (18) describes a state in which the energy flux
is directed toward higher frequencies and it grows from
zero at a minimal frequency wmin to a constant asymp-
totic value (19) at large frequencies. In this asymptotic
range, the spectrum has a pure direct cascade scaling
(1). Thus, the answer to the question asked in the be-
ginning of this paper is that it is the direct rather than
the inverse cascade scaling that dominates in kelvulence
excited by reconnections. However, a certain amount
of waveaction is also produced by the reconnections per
unit time near wn;iy; it leaks to smaller frequencies and
must be absorbed at the wp;i, boundary (otherwise there
would be a pile-up of spectrum near wmi, without reach-
ing a steady state). This absorption seems to arise natu-
rally in the system because the waveaction conservation
takes place only in the weak turbulence regime which
breaks down near wmin, particularly due to the mode
discreteness.

So far we neglected dissipation the role of which is
to absorb the energy cascade at very high frequencies.
In superfluids there is no viscosity and the dissipation
is due to either sound generation by short Kelvin waves
(near absolute zero temperature) or due to a friction

with the normal component (at higher temperatures)
[11]. Study of the dissipation effects on the direct cas-
cade in kelvulence within DAM approach was done in
[8] and [10]. It was shown that both of these dissipation
mechanisms do not affect the direct cascade spectrum
at low w but they arrest at some large frequency which
results in a sharp cut-off of the spectrum at some max-
imum frequency wmax- A finite cut-off due to phonon
radiation was earlier predicted also in [12] and [13].

Assuming that wmay > Wmin, We see that the recon-
nection forcing and the radiative/frictional dissipation
are separated in the frequency space: the forcing is ef-
fectively concentrated near wn;, and the dissipation acts
only near wp,,. This justifies the approach taken in this
paper where we neglected the radiational and frictional
radiation while considering the effect of the reconnection
forcing.

An interesting problem for future studies would be
numerical simulation of DAM given by the fourth-order
equation (3) including the reconnection forcing as well
as the radiation or/and friction dissipation, and compar-
ison of it with direct numerical simulations of the vortex
line with the same forcing and dissipation mechanism.
It would also be interesting to establish what effects on
kelvulence have curved geometry and non-stationarity
of the vortex filaments.
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