Leggett's Mode in $Mg_{1-x}Al_xB_2$

Ya. G. Ponomarev, S. A. Kuzmichev, M. G. Mikheev, M. V. Sudakova, S. N. Tchesnokov, Hoang Hoai Van, B. M. Bulychev⁺, E. G. Maksimov^{*}, S. I. Krasnosvobodtsev^{*}

Faculty of Physics, Moscow State University, 119899 Moscow, Russian Federation

+Faculty of Chemistry, Moscow State University, 119899 Moscow, Russian Federation

*P.N. Lebedev Institute of Physics RAS, 117924 Moscow, Russian Federation

Submitted 21 November 2006

A detailed investigation of multiband superconductivity and Leggett's mode in the $Mg_{1-x}Al_xB_2$ ($0 \le x \le 0.45$) system was carried out using tunneling and Andreev spectroscopy. Temperature dependences of superconducting gaps Δ_{σ} and Δ_{π} and their variation upon the degree of disorder and the Al concentration were studied. The dependence of the Leggett's mode energy ε_0 upon the values of the gaps Δ_{σ} and Δ_{π} has been derived.

PACS: 74.45.+c, 74.50.+r, 74.70.Ad

Introduction. According to a popular version [1, 2]magnesium diboride displays a two-gap superconductivity. The large gap Δ_{σ} corresponds to 2D charge carriers in σ -bands, while the small gap Δ_{π} corresponds to 3D carriers in π -bands. Both gaps close simultaneously at the critical temperature $T_c \cong 40 \,\mathrm{K} \,[3-6]$. The presence of a van Hove singularity in 2D σ -bands may strongly affect the value of T_c if one shifts the Fermi level to the peak in the quasi-particle density of states through doping [7]. The quasi-particle density of states in MgB2 has two distinctive gap singularities, which result in two independent subharmonic gap structures (SGS), corresponding to Δ_{σ} and Δ_{π} , appearing in the current-voltage characteristics of Andreev point contacts of SnS type [8-10]. Accordingly two-gap structures are present in the current-voltage characteristics (CVCs) of tunneling NIS and SIS junctions [3-6, 8-10].

In 1966 Leggett had predicted for two-band superconductors a collective mode resulting from small fluctuations of the relative phase of the two superconducting condensates [11]. An expression for the energy of the Leggett's mode for MgB_2 has been derived by Sharapov et al. [12]:

$$\varepsilon_0^2 = 4\Delta_\sigma \Delta_\pi [(\lambda_{12} + \lambda_{21})/(\lambda_{11}\lambda_{22} - \lambda_{12}\lambda_{21})],$$
 (1)

where λ_{ij} – dimensionless interband and intraband coupling constants. The Leggett's mode energy ε_0 is governed by the values of intraband coupling constants and goes to zero in case of noninteracting bands. The Leggett's mode is observable only when $\varepsilon_0 < 2\Delta_{\pi}$ [12].

As it was shown by Agterberg et al. [13], a Josephson junction on the basis of a two-gap superconductor can be used to detect a collective plasma mode originally

proposed by Leggett [11]. A resonance enhancement of the DC current through a Josephson junction at a bias voltage $V_{\rm res}$ is expected when the Josephson frequency $\omega_{\rm J}$ or its harmonics $(n \cdot \omega_{\rm J})$ match the energy of the Leggett's mode ε_0 or its harmonics $(m \cdot \varepsilon_0)$ [8, 9, 13]:

$$\varepsilon_0 = (n/m)2eV_{\rm res},\tag{2}$$

where n and m are integer numbers.

In case of Andreev point contacts of the SnS type the resonant emission of Leggett's plasmons with the energy ε_0 causes the appearance of several sets of subharmonic gap structures for σ - σ channel at bias voltages [8,9]:

$$V_{n,m} = (2\Delta_{\sigma} + m\varepsilon_0)/en, \tag{3}$$

where n and m are integer numbers (m is a number of emitted Leggett's plasmons). In the present investigation we have studied peculiarities on the dI(V)/dV-characteristics of break junctions in $\mathrm{Mg}_{1-x}\mathrm{Al}_x\mathrm{B}_2$ related to Leggett's collective mode assisted tunneling. For the first time the dependence of the excitation energy ε_0 upon the values of the large (Δ_σ) and small (Δ_π) gaps at $T=4.2\,\mathrm{K}$ has been derived for $\mathrm{Mg}_{1-x}\mathrm{Al}_x\mathrm{B}_2$ samples with the critical temperature T_c in the range $40.5\,\mathrm{K} \leq T_c \leq 6.5\,\mathrm{K}$. The result is in a qualitative agreement with the theoretical predictions [11,12].

Experiment. In the present investigation a study of superconducting properties of $Mg_{1-x}Al_xB_2$ polycrystalline samples has been performed. The following experimental methods were employed in our investigations:

1) Andreev spectroscopy (multiple Andreev reflections (MAR) in $Mg_{1-x}Al_xB_2$ break junctions of the SnS type),

2) tunneling spectroscopy (Josephson $\mathrm{Mg}_{1-x}\mathrm{Al}_x\mathrm{B}_2$ SIS junctions). Both methods of investigation of superconducting properties of $\mathrm{Mg}_{1-x}\mathrm{Al}_x\mathrm{B}_2$ involve using a break junction technique. The break-junction technique allows changing the junction properties during the measurements, so that the tunneling-contact like (SIS) and Andreev-contact like (SnS) behavior could be investigated on the same sample. A local critical temperature T_c in submicron $\mathrm{Mg}_{1-x}\mathrm{Al}_x\mathrm{B}_2$ break junctions has been determined from the measured temperature dependences of superconducting gaps $\Delta_\sigma(T)$ and $\Delta_\pi(T)$.

In the CVC of $Mg_{1-x}Al_xB_2$ break-junctions (SIS type) we have observed peculiarities of the type (2) related to the Leggett's mode [8,9,11-13] (Fig.1). The

Fig.1. A fragment of the I(V)-characteristic of a break junction in a MgB₂ sample at $T=4.2\,\mathrm{K}$ (tunneling mode). A structure marked by an arrow is caused by coupling of the AC Josephson current to a Leggett's mode with the energy $\varepsilon_0=4\,\mathrm{meV}$

structure is detectable only at temperatures $T < T_c$ and disappears with suppression of the Josephson current by an external magnetic field (which supports the abovementioned version).

We have also observed a reproducible SGS of the type (3) in the CVCs of SnS (Andreev) contacts (Fig.2). In this case the traditional threshold energy $2\Delta_{\sigma}$ should

Fig.2. The SGS for a σ - σ channel at bias voltages $V_{n,m}=(2\Delta_{\sigma}+m\varepsilon_{0})/en$ for a MgB₂ contact ($T=4.2\,\mathrm{K},\,\Delta_{s}=7.5\,\mathrm{meV}$). "Satellites" in the SGS are caused by emission of m Leggett's plasmons with the energy $\varepsilon_{0}=3.9\pm0.2\,\mathrm{meV}$ in the process of MAR

be replaced by $(2\Delta_{\sigma} + m\varepsilon_0)$ due to a resonant emission of m Leggett's plasmons in the process of MAR. The energy of Leggett's mode in $\mathrm{Mg}_{1-x}\mathrm{Al}_x\mathrm{B}_2$ samples was found to decrease with reduction of T_c (Fig.3, Fig.4).

Discussion. Qualitatively a fine structure in the CVCs of MgB₂ Josephson junctions resembles the one in the CVCs of Bi-2212 Josephson junctions [14]. The latter is caused by the coupling of the AC Josephson current to the Raman-active optical phonons in a frequency range up to 20 THz [14, 15]. Nevertheless, we believe that the peculiarities observed in the present investigation are related namely to the Leggett's collective excitations. There are several reasons for such a conclusion. Firstly, there are no optical phonons with the energy as low as 4 meV in MgB₂. Secondly, the effective interaction between the AC Josephson current and low-energy acoustic phonons can exist only in the presence of a resonator system inside the junction. Then the observed subgap structure could appear at voltages matching the energies of resonator eigenmodes. It is very unlikely that all our break-junctions demonstrating the discussed subgap structure possess identical res-

Fig.3. The SGS for a σ - σ channel for a Mg_{1-x}Al_xB₂ contact ($T=4.2\,\mathrm{K}$). "Satellites" are caused by emission of m Leggett's plasmons with the energy $\varepsilon_0=3.4\,\mathrm{meV}$ ($\Delta_\sigma=6.2\,\mathrm{meV},\,T_c=21.5\,\mathrm{K}$)

onator systems. Finally, a fine structure in the CVCs of the investigated SIS and SnS contacts can not be caused by "depairing" of Cooper pairs in the π -condensate since for all contacts the temperature dependence of the energy of the observed mode was found much weaker than the temperature dependence of a small gap Δ_{π} in MgB₂.

main parameters of the investigated polycrystalline $Mg_{1-x}Al_xB_2$ samples and MgB₂ polycrystalline samples with different level of disorder (microinclusions of MgO) are presented in Table, Fig. 5 and Fig.6. An important point is that the temperature dependences $\Delta_{\sigma}(T)$ and $\Delta_{\pi}(T)$ in the $Mg_{1-x}Al_xB_2$ system are qualitatively different. The $\Delta_{\sigma}(T)$ dependences are close to the BCS type (Fig.4). However, the $\Delta_{\pi}(T)$ gap behaves in a cardinally different way (Fig.4, see also Fig.3 in [10]). The appearance of a "tail" in the $\Delta_{\pi}(T)$ curves is a notable evidence of a weak coupling between σ - and π -condensates (interband coupling constants $\lambda_{\sigma\pi}$ and $\lambda_{\pi\sigma}$ are by an order of magnitude smaller than intraband coupling constants $\lambda_{\sigma\sigma}$ and $\lambda_{\pi\pi}$) [16].

Fig.4. The SGS in dI/dV characteristics of a break junction in ${\rm Mg_{1-x}\,Al_xB_2}$ at different temperatures ($T_c=21.5~{\rm K}$). The SGS dips labeled n_σ (σ -bands) and n_π (π -bands) are indicated

The dependence of the excitation energy squared ε_0^2 upon the product of the gaps $(\Delta_\sigma \cdot \Delta_\pi)$ at $T=4.2\,\mathrm{K}$ for $\mathrm{Mg}_{1-x}\,\mathrm{Al}_x\mathrm{B}_2$ samples (Fig.6) is in qualitative agreement with theoretical predictions [11,12] (see Eq.(1)). The slope of the curve given by $K=4[(\lambda_{\sigma\pi}+\lambda_{\pi\sigma})/(\lambda_{\sigma\sigma}\lambda_{\pi\pi}-\lambda_{\sigma\pi}\lambda_{\pi\sigma})]=1\pm0.2$ is in agreement with the above given estimation and at the same time 3.5 times smaller than the value of K calculated from the data presented in [17]. It was shown in [18] that the decrease of T_c in $\mathrm{Mg}_{1-x}\,\mathrm{Al}_x\mathrm{B}_2$ is mainly a result of scaling of all coupling constants λ_{ij} caused by the variation of the density of states as a function of doping, which probably leaves the value of K intact.

Conclusions. In the present investigation we have studied peculiarities on the dI(V)/dV-characteristics of break junctions in $\mathrm{Mg}_{1-x}\mathrm{Al}_x\mathrm{B}_2$ related to Leggett's collective mode assisted tunneling. For the first time the dependence of the excitation energy ε_0 upon the values of the large (Δ_σ) and small (Δ_π) gaps at $\mathrm{T}=4.2\,\mathrm{K}$ has been derived for $\mathrm{Mg}_{1-x}\mathrm{Al}_x\mathrm{B}_2$ samples with the critical temperature T_c in the range $40.5\,\mathrm{K} \leq T_c \leq 6.5\,\mathrm{K}$. The

N^0	sample	Тс, К	$\varepsilon_0,\mathrm{meV}$	$\Delta_\sigma,~{ m meV}$	$\Delta_{\pi},\mathrm{meV}$	ε_0^2 , meV ²	$\Delta_{\sigma} \cdot \Delta_{\pi}, \text{meV}^2$
$\mathrm{Mg}_{1-x}\mathrm{Al}_{x}\mathrm{B}_{2}$ polycrystalline samples							
1	MBA2	6.5	1.2	1.4	0.7	1.44	0.98
2	MBA3	12	1.9	2.7	1.3	3.6	3.51
3	MBA3	14	2.5	4.2	1.7	6.25	7.14
4	MBA1	21.5 ± 0.5	3.4	6.2	1.95	11.6	12.09
MgB ₂ polycrystalline samples with different level of disorder							
1	MB2D12	28 ± 2	4.5	7.0	2.4	20.2	16.8
2	KRW4	30	4.0	7.5	2.0	16.0	15.0
3	MB4	32 ± 2	4.0	8.0	2.0	16.0	16.0
4	BBSC	33	3.6 ± 0.4	8.2	2.0	13.0	16.4
5	MB7D06	40	5.0	10.1	2.1	25.0	22.26

The main parameters of investigated $Mg_{1-\omega}Al_{\omega}B_2$ and MgB_2 samples

Fig.5. The Δ_{σ} (solid symbols) and Δ_{π} (open symbols) gaps as functions T_c for $\mathrm{Mg}_{1-x}\mathrm{Al}_x\mathrm{B}_2$ (squares, triangles) and MgB_2 with different degree of disorder (circles, diamonds). Solid lines are drawn for convenience sake

result is in a qualitative agreement with the theoretical predictions [11,12].

We are grateful to V.F. Gantmakher, L.M. Fisher, and M.R. Trunin for helpful discussions. This work was supported by the Russian Foundation for Basic Research (project # 02-02-16658, # 05-02-17915, # 02-02-17353), INTAS-2001-0617, and the scientific programs of the Russian Academy of Sciences and the Ministry of Industry, Science, and Technology.

Fig.6.The dependence of the excitation energy squared ε_0^2 upon the product of the gaps $(\Delta_\sigma \Delta_\pi)$ at $T=4.2 \,\mathrm{K}$ for $\mathrm{Mg}_{1-x}\mathrm{Al}_x\mathrm{B}_2$ samples $(40.5 \,\mathrm{K} \le T_c \le 6.5 \,\mathrm{K})$

- A. Y. Liu, I.I. Mazin and J. Kortus, Phys. Rev. Lett. 87, 087005 (2001).
- H. J. Choi, D. Roundy, H. Sun et al., Nature 418, 758 (2002).
- 3. F. Giubileo, D. Roditchev, W. Sacks et al., Europhys. Lett. 58, 764 (2002).
- P. Szabo, P. Samuely, J. Kacmarcik et al., Phys. Rev. Lett. 87, 137005 (2001).
- R. S. Gonnelli, D. Daghero, G.A. Ummarino et al., Phys. Rev. Lett. 89, 247004 (2002).
- M. Iavarone, G. Karapetrov, A. E. Koshelev et al., Phys. Rev. Lett. 89, 187002 (2002).
- 7. J. B. Neaton and A. Perali, arXiv: cond-mat/0104098.

- 8. Ya. G. Ponomarev, S. A. Kuzmichev, M. G. Mikheev et al., arXiv: cond-mat/0303640.
- 9. Ya. G. Ponomarev, S. A. Kuzmichev, M. G. Mikheev et al., Sol. State Comm. 129, 85 (2004).
- Ya. G. Ponomarev, S. A. Kuzmichev, N. M. Kadomtseva et al., JETP Letters 79, 484 (2004).
- 11. A. J. Leggett, Prog. Theor. Phys. 36, 901 (1966).
- 12. S.G. Sharapov, V.P. Gusynin, and H. Beck, arXiv: cond-mat/0205131 vl.
- D. F. Agterberg, E. Demler, and B. Janko, Phys. Rev. B 66, 214507 (2002).

- Ya. G. Ponomarev, E. B. Tsokur, M. V. Sudakova et al., Sol. State Comm. 111, 513 (1999).
- E. G. Maksimov, P. I. Arseev, and N. S. Maslova, Sol. State Comm. 111, 391 (1999).
- 16. E. J. Nicol and J. P. Carbotte, arXiv: cond-mat/0409335 vl.
- 17. A. A. Golubov, J. Kortus, O. V. Dolgov et al., J. Phys.: Condens. Matter 14, 1353 (2002).
- J. Kortus, O. V. Dolgov, and R. K. Kremer, Phys. Rev. Lett. 94, 027002-1 (2005).