Pis’'ma v ZhETF, vol. 85, iss. 1, pp. 74—78

© 2007 January 10

Josephson effect in thin films: the role of vortex excitations
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We consider quantum slips of phase at a round hole punctured in a thin superconducting film and show
that virtual vortex pairs provide an efficient pathway for these processes. Specifically, in the limit when the
normal-state resistivity of the film is large, the presence of the film causes at most a logarithmic interaction
between phase slips. This is in contrast to the nearly linear confining interaction (and the consequent nearly
activated behavior of the resistance) obtained when vortices are neglected.

PACS: 74.50.+r, 74.78.Na

1. Introduction. Any superconducting device at a
non-zero temperature is to some extent resistive. (In
this article, we define resistance as dV/dI at zero cur-
rent.) Of considerable theoretical and practical interest
is the law according to which the resistance vanishes as
the temperature T' goes to zero. There are several cases
in which the resistance has been theoretically predicted
to obey a power law, dV/dI o« T%; in all these cases,
the exponent « is determined by dissipative effects that
induce a logarithmic interaction between quantum phase
slips.

One case is a resistively shunted Josephson junction
(RSJ), where the interaction between the phase slips
is controlled by the shunt resistance [1]. Another is a
junction connecting two one-dimensional (d = 1) super-
conducting wires. In that case, a is determined by the
phase stiffness of the leads [2] and is related to the line
impedance of the wires — a dissipative effect due to the
presence of the gapless plasmon mode [3, 4]. Similar
physics has been predicted to occur in a junction cou-
pled to a transmission line [5] and in a d = 1 wire with-
out a junction but in the presence of disorder [6].

It is natural to ask what happens in another case
when the plasmon in the leads is gapless [3], and there
is no shunt, namely, when a junction connects two thin-
film superconductors (d = 2). In recent papers, Hermele
et al. [7] have reached the unexpected conclusion that
in this case the resistance drops at 7 — 0 much sharper
than a power law, exhibiting a nearly activated behav-
ior. Taken at face value, their result means that the
presence of the film creates an almost unsurmountable
obstacle for a change of the phase at the junction’s end.

In this article, we show that the result of Ref. [7] is
a consequence of the Gaussian approximation used by
these authors to describe fluctuations in the leads. We
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will see that there is an efficient non-Gaussian mecha-
nism for changing the phase. It involves nucleation, mo-
tion, and subsequent annihilation of virtual vortex pairs.
In the limit when the normal-state resistivity of the film
is large enough (so that the Ohmic dissipation at the vor-
tex cores can be neglected), such pairs cause at most a
logarithmic interaction between phase slips and, conse-
quently, at most a power-law resistance. Put differently,
our result means that, at sufficiently low temperatures,
vortices in the leads must be involved if a phase slip at
the junction is to occur with any appreciable probability.

2. The boundary problem. As a model of a
thin-film lead, we consider a punctured superconducting
plane — a plane with a round hole of radius R centered at
the origin (Figure). A Josephson junction (not shown in
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A punctured superconducting plane, with a vortex (V) and
an antivortex (A). The vortex making a full circle around
the puncture changes the phase at it by 27

the figure) will have the form of a tube attached to the
puncture and connecting the system either to another
film or to a bulk superconductor.

Away from vortex cores, the film can be described
by a phase-only theory. We consider in detail the case
when the charge-charge interactions are short-ranged
(i-e., a ground plane is present nearby); the case of un-
screened Coulomb interaction can be treated similarly.
The Euclidean Lagrangian of the phase-only theory is

Lr = ingb,0 + 1 0,0)% + %lez , (1)

2g (
where ng is the equilibrium superconducting density, g
is the charge-charge coupling, K is the superconduct-
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ing stiffness, and 7 = it is the Euclidean time. If we
want to take vortices into account, it is essential to al-
low the phase 0(z,y; T) to be a multi-valued function of
(z,y). For a single-valued 6, Eq. (1) becomes a wave
Lagrangian describing a gapless plasmon with speed
Co = \/g_K}

After a QPS in the junction occurs, the phase in the
leads needs to relax to the profile corresponding to the
new value of the supercurrent (the current is eventu-
ally replenished by an external battery, resulting in a
nonzero voltage across the sample). Our goal will be
to see how the matrix element responsible for this re-
laxation affects the phase-slip probability. For this cal-
culation, we will use the semiclassical technique based
on considering configurations that connect the relevant
states in the imaginary (Euclidean) time — instantons.
These instantons live in the leads: we will not need to
specify the internal dynamics of the junction (due to the
junction capacitance, etc.), beyond assuming that it does
not suppress QPS too strongly.

An instanton will need to produce a phase differ-
ence between the puncture and the spatial infinity. The
phase change at infinity during the relaxation process
(i-e., after the phase slip, in Euclidean time) is zero, so
the phase must change at the puncture. Accordingly, the
boundary condition is taken in the form

0(T =R, ¢; T) = 00(T)a (2)

where 6y (7) is a function of the Euclidean time but not
of the polar angle ¢. This means that there is a single
phase that characterizes this side of the junction, i.e.,
the junction is point-like rather than extended. In the
instanton considered in Ref. [7], 8o(7) acts as an an-
tenna that emits plasmons into the film, and what these
authors show, in effect, is that the impedance matching
of this antenna to the film is quite poor. In the instanton
proposed here, plasmons are emitted by a vortex moving
around the puncture.

3. Instantons from plasmons. To set the stage,
let us first reproduce (by a different method) the result
of Ref. [7], which is obtained by neglecting vortices in
the film. In this case, the first (topological) term in
Eq. (1) can be dropped, and the field  can be assumed
single-valued. The theory then becomes Gaussian, and
the solution to the boundary problem is obtained as a
linear combination of individual harmonics, plus a time-
independent term that corresponds to a constant super-
current I flowing out of the puncture. At 7' = 0,

CdY a0 Ko(kr) I T
= —e "T0y(Q2 In —
6(r,7) /, 2 R ORIk, P R
3)
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where 6y(€) is the Fourier transform of 8 (7):

oo

80() = / dre’0o(7) ,
— 00

k = |Q|/co, where ¢ is the plasmon speed; K is the

modified Bessel function. Towards the end of the calcu-

lation, we will see how a finite temperature can be taken

into account.

In the last term in Eq. (3), e < 0 is the electron
charge. For definiteness, we take I < 0, i.e., electrons
flow out, so that the ratio in which I and e will always
occur is positive, I/e > 0.

We begin with the case when the stiffness K, in one
of the leads is much larger than in the other, so only
fluctuations in the weaker lead need to be considered.

Substituting Eq. (3) into the Euclidean action, we
find that, when the characteristic k are small, kR < 1,
the main contribution comes from the gradient term in
(1), and the action (relative to that for §; = 0) is

Ky [© - ., 1 I [®
(4)

Instead of a single instanton, changing 6y by 2w, it is
somewhat more convenient to consider an instanton-
antiinstanton (IA) pair

bo(7) = 270(7)O(70 — 7) (5)

which rotates the phase by 27 at 7 = 0 and by —27
at 7 = 179 > 0. We will not need to resolve the short-
time details of these phase rotations, so the sharp step-
functions will be sufficient. For this configuration, the
action (4) becomes

1—cos(Qr) =

Pmwr) e ©

oo
Sg = 4n’K, / dQ
— 00
The second term reflects the fact that an instanton re-
leases an amount of energy, E = 7l /e, from the super-
current. This term is deconfining, i.e., it favors large
values of the TA separation 75. On the other hand, the
first term is confining, and it scales nearly linearly with
To at large 7.

The power dissipated in the system is given by the
energy F times the difference between the direct (instan-
ton) rate R4 (I), and the reverse (antiinstanton) rate
R_(I). The voltage, obtained by dividing the power by
the current, is

V= g(m ~R_). (7)

At T # 0, instead of a single TA pair we must consider a
chain of such pairs, periodic in 7 with period 8 = 1/T.
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This results in replacing the integral over Q in Eq. (6)
by a sum over Q,, = 2anT, where n is a nonzero integer.

In the leading semiclassical approximation, the in-
stanton rate is

ﬂ !
Ri(I) ~Im / droe= 585 (8)
0

(a version of the optical theorem). Here Sg is the action
(6), with the integral replaced by the sum, while S’ is
the part of the IA action unrelated to the presence of
the film. In accordance with the way the problem was
formulated in Sect. 2, we assume that, at large 79, S’ is
much smaller than the first term in Eq. (6).

The two terms in Eq. (6) become comparable at

£e4w2eK5/I —
Co

To ~ Ts)

which is very large at small currents. In the limit
B < 75, the saddle point that determines the imaginary
part in (8) is located at 70 = /2, and, computing the
sum over n to logarithmic accuracy, we obtain

K, ”J->. (9)

Rall) ~ o0 (~ i) * 267

When the leads are of comparable stiffnesses, K, and
K, the phase change of 27 is shared between them, and
K, in Eq. (9) needs to be replaced with KK, /(K, +
+ K!).

The resistance can now be obtained from Eq. (7),
and we see that it is proportional to the rate (9) taken
at I = 0. This has a nearly activated dependence on
T (“nearly” means that the activation exponent is sup-
pressed by a logarithm) — the result of Ref. [7]. We
also see that this result can be interpreted as a conse-
quence of the nearly linear confinement of instantons in
the Gaussian theory.

4. Instantons from vortices. We now take vor-
tices into account. Consider first a single vortex at dis-
tance ro from the origin. If

To — R > £, (10)

where ¢ is the vortex core radius, we can continue to
use the phase-only theory (1), provided we allow 8 to be
multi-valued. Of course, vortices encircling the punc-
ture at these relatively large 7o do not necessarily make
the best instantons; in all likelihood, smaller circles are
more advantageous. What we intend to show, however,
is that at sufficiently low 7" even these larger circles have
much smaller Euclidean actions than the “vortexless” in-
stantons considered in the preceding section.

It is useful to consider, in addition to 8, its dual field
1), defined by

o9y _ 09 o _ 09

ox Oy’ 0y Oz’
Since these are the Cauchy-Riemann conditions, the
complex field

w =1 +i0

is an analytic function of z = z + 7y.

For a single vortex at the point zo of the complete
(not punctured) plane, w equals wo = In(z — zp). The
presence of the puncture will deform this into

LU WPR AP
2z 2r R’
(11)

where w; is comprised by the first two terms, and wr is
the last term, describing a supercurrent I flowing out of
the puncture;

w1+wr:1n(z—z0)+1n(1—

I
= .
2eK,

Note that Eq. (11) satisfies the equation of motion of
the phase-only theory and obeys the boundary condition

00

9| _» 0. (12)
This is precisely the condition that the entire puncture
has the same value of the phase, §(r = R, ) = 6o, and
one readily sees that, by supplying the vortex position
with a Euclidean time dependence, one can obtain any
history 6o (7) that may be required by Eq. (2).

In terms of the dual field v, the vortex is a “charge”,

i.e., a point at which V29 # 0. The boundary condition
(12) is equivalent to

k4

=0.
or r=R

Thus, 1 can be interpreted as the velocity potential of
an ideal incompressible fluid incident from a source at
2z = zo and flowing past a round obstacle of radius R.
In this picture, I' is the circulation of the fluid around
the obstacle.

We now construct a family of trial instanton config-
urations, each of which represents a three-step process:
nucleation of a vortex-antivortex pair, motion of the vor-
tex in a loop around the puncture (while the antivortex
remains at rest), and annihilation of the pair. The solu-
tion corresponding to an antivortex at point zj is

R2
we = —In(z — z)) —In (1_W>’
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and the solution corresponding to a pair is w = wy +
+ wz + wr. For the phase §, this gives

9(%?]57) :91(-'3,3/;7)+92(53,y)+91“($ay), (13)

where 61, 05, and Or are the imaginary parts of w;, wa,
and wr, respectively. In Eq. (13), we have made 6,
7-dependent by supplying a 7-dependence to the vortex
position zg.

Each instance of the three-step activity is a single in-
stanton. An IA pair consists of an instanton (i.e., a vor-
tex loop) at time around 7 = 0 and an antiinstanton (an
antivortex making a loop) at time around 7 = 75 > 0.

Since the vortex loop releases energy from the super-
current, we expect a deconfining, linear in 7y term in the
TA action — a counterpart of the second term in Eq. (6).
However, we will see that none of the other terms in the
action is nearly as sensitive to 79. In other words, there
is no counterpart to the first, confining term of Eq. (6).

The deconfining term comes from the product of
V(0; + 65) and Vér, obtained when Eq. (13) is sub-
stituted in the Lagrangian (1). The calculation requires
some care, because the resulting Lagrange function is not
a single-valued function of the vortex position. However,
the gradient of the Lagrange function (the force) must
be. Accordingly, we first compute the force directly:

0 Yo
F, = -K, [ dedyVér—Vé;, = —K,0—2°>
/ VO By ¥ O 3+ 93
(14)
F,= K2 _ (15)

b
o3 + ug
and then integrate with respect to xg, yo to obtain the
action

Skz = —K,T / dr arglzo(r)]. (16)

In the equivalent incompressible fluid, described by v,
the force (14), (15) is the Kutta-Zhukovskii (KZ) lift
force or, more precisely, the reaction force acting back
on the source.

When R is of order of or smaller than £, the case
of main interest to us, Eq. (10) implies ro > R. The
remaining terms in the single-instanton action will be
given in this limit, as indicated by the approximate
equality sings in the equations below. The weakness
of their dependence on 79—the crucial property that we
seek to establish — does not depend on this approxima-
tion. The individual terms are as follows.

(i) The topological term in (1) gives rise to the Mag-
nus force; the corresponding term in the action is

Sy = ino/dzwdra,.ﬂl = 27rin0/d7w0;i/0. amn
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Hereinafter overdots denote derivatives with respect to
the Euclidean time 7.

(ii) The remaining terms in (1) are responsible, in
addition to the lift-force action (16), for the kinetic en-
ergy and the vortex-antivortex potential: to logarithmic
accuracy,

S1 = ;—g /dT(.’i)g ) lng + QTFKs/dTIH@,
where [(7) is the distance between the vortex and the
antivortex, and L is the infrared cutoff — the smaller of
the size of the film and the perpendicular magnetic pene-
tration length A . The appearance of the infrared cutoff
has to do with the fact that in our trial configuration (13)
the vortex moves as a rigid structure. We do not exclude
that, when L far exceeds the plasmon wavelength co7o,
there are better trial configurations, which include retar-
dation and for which L is replaced by co79. That would
lead to a logarithmic dependence of the action on the TA
separation, similar to that in the one-dimensional case.

It is well known that both the Magnus force and the
inertial mass can be strongly renormalized by electrons
at the vortex core [8]. The present calculation refers
to the hydrodynamic limit, when the electron relaxation
time 7, is much shorter than either the timescale of the
vortex motion or the inverse of the “minigap” of the core
electrons.?) For short 7,, the correction to the inertial
mass is small, but the correction to the Magnus force is
anomalously large and almost precisely cancels [8] the
hydrodynamic contribution (17).

The deconfining term (16) is the only term in the
instanton action that significantly depends on the pres-
ence of an antiinstanton at 7 = 75. The Magnus force
action is finite at 79 — oo, and the kinetic term grows
at most logarithmically (if the replacement of L with
coTo contemplated above is effected). Accordingly, at
small enough currents, the counterpart of Eq. (9) for
the instanton rate is

nl
R+(I) ~ exp {—S’(T) - 8"(T) + —} , (18)
2eT
where S'(T) is, as before, unrelated to the presence of
the leads, while S"(T) grows at most logarithmically
with 1/T. Thus, the resistance, obtained using Eq. (7),
does not suffer from the nearly exponential in 1/7T" sup-
pression that was characteristic of the “vortexless” in-
stantons considered in the preceding section.

2)In this sense, it is analogous to the calculation [6] of the QPS
rate in a d = 1 wire in the limit when the main dissipative effect
is the finite wave impedance of the wire, rather than the normal
conductance of the phase-slip core.
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5. Discussion. We have considered, for the case
of a punctured superconducting film, tunneling paths
formed by virtual vortex-antivortex pairs encircling the
puncture and found that the action S” in the tunneling
rate (Eq. (18)) depends at most logarithmically on T in
the limit 7" — 0. This means that, when a Josephson
junction connects two such films (or a thin film and a
bulk superconductor), the thin-film leads do not create
too much of an obstacle to destruction of superconduc-
tivity by quantum phase slips. In particular, they do not
cause the resistance to drop exponentially (or nearly ex-
ponentially) in 1/T at low temperatures.

One should keep in mind, though, that our results
were obtained in the extreme hydrodynamic limit 7, —
— 0, when the normal resistivity p of the film is effec-
tively infinite. A finite p will cause dissipation at the
vortex cores, and we cannot exclude that in this case
a new long-range interaction between QPS will appear.
We have shown, however, that at least the dramatic sup-
pression of QPS obtained in the Gaussian theory [7] dis-
appears when one takes vortices into account.
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