Home
For authors
Submission status

Current
Archive (English)
Archive
   Volumes 61-80
   Volumes 41-60
   Volumes 21-40
   Volumes 1-20
   Volumes 81-92
      Volume 92
      Volume 91
      Volume 90
      Volume 89
      Volume 88
      Volume 87
      Volume 86
      Volume 85
      Volume 84
      Volume 83
      Volume 82
      Volume 81
Search
VOLUME 85 (2007) | ISSUE 2 | PAGE 114
Jet absorption and corona effect at RHIC. Extracting collision geometry from experimental data
Abstract
We demonstrate a possible existence of a finite formation time of strongly interacting plasma in nuclear collisions at RHIC from recent experimental data. To show this, we use a simple model based on Monte Carlo simulation of nucleus-nucleus collisions with realistic nuclear density distribution. The most striking feature of the experimental data - an absence of absorption of high transverse momentum pions in the reaction plane direction for mid-peripheral collisions - points to the presence of a surface zone with no absorption and strong suppression in the inner core. A natural interpretation of such a zone could be the plasma formation time T\simeq2{-}3 fm/c. The existence of a formation time could dramatically change our understanding of many experimentally observed features. With this assumption we describe the angular anisotropy of high transverse momentum pions with respect to the reaction plane and the centrality dependence of nuclear modification factor in Au+Au and Cu+Cu collisions.