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The spectrum of excitations of a heavy-fermion superconductor at 7 = 0 may
contain anomalous branches associated with a domain structure of the
superconducting phase. Such a spectrum gives rise to a finite state density N(0). A
unit volume of a domain wall corresponds to a state density on the order of the
normal density.

The electron component of the heat capacity, C, (T, in a “heavy-fermion” super-
conductor (e.g., UBe,; or UPt;) is proportional to 7> or T2 at low temperatures,
showing that the gap in the excitation spectrum vanishes at certain points (in the case
of an axial phase) or on entire lines (a polar phase) on the Fermi surface (see, for
example, the review by Moshchalkov and Brandt'). Recent studies of C, in UBe,,
(Refs. 2-4) and UPt, (Refs. 5-7) in the interval 50-300 mK, however, have revealed
a linear contribution C, = yT + BT? 3, where ¥ corresponds to a state density N(0)
which amounts to ~1%-5% of the normal density.

This behavior of C, (7") can be linked with the presence of impurities, but even in
the Born approximation,®? and with resonant scattering,”'*'" it has been shown that a
certain critical defect concentration is required for the appearance of a nonzero N(0)
in an axial superconductor. (Incidentally, it is not clear whether the superconducting
phase in UPt; is axial, although, even in the polar phase, the critical concentration is
zero only in the Born approximation. In the experiments of Refs. 2-7 the defect
concentration in the samples was apparently below the critical level. Ott et al.,” have
shown that incorporating resonant scattering leads to a fairly good approximation of
the experimental curves if the impurity concentration and the scattering phase shift
are chosen appropriately, but in this case there is no linear component in C,.

In the present letter we wish to propose an alternative explanation of the behavior
of C, (T) in an axial superconductor. The appearance of a nonzero N(0) stems from a
domain structure in the superconducting order parameter. We assume that the super-
conductivity is a triplet superconductivity'? (S=1)

Am = i67GdE). | (1)

The strong spin-orbit coupling in heavy-fermion compounds has the consequence that
under rotations of the crystal lattice the vector d should transform in accordance with
irreducible representations of the point rotation group of the crystal'*:

d(k) = 3 27/ @0, @)
j 1
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where j is the number of the representation, and / is the number of the basis function
(k) in it.

A superconducting phase which grows from nucleating regions that arise inde-
pendently at 7, will unavoidably have a domain structure in which the coefficients 7
vary from domain to domain and the transition region (the domain wall) has a thick-
ness on the order of £ = vz/A, We consider the case in which only the two-dimen-
sional coordinate representation is involved in expansion (2) of the superconducting
order parameter in a crystal of tetragonal or hexagonal symmetry (for example, UPt,,
CeCu,Si,, and UFe)

d,=nk+tnk, d=d=0. (3)

This form of d corresponds to an axial superconducting phase."?

We assume that 7, changes sign as we go through a domain wall oriented perpen-
dicular to the x axis, while 7, remains constant:

771 = (le/sz)tanh (x/s)! 772 = Ao/zkp, (4)

so that far from the wall we have d, = (Ao/2kp)( + ik, + k).

We perform a standard canonical transformation of the ¥ operators:
ES +
- v 14
Vi@ = Ev(ul(2) (e () * Vi) Waf,y)s (3)

where the summation runs over all states. The Bogolyubov equations for u and v can
be written [we are using Egs. (1) and (3)]

A A
le = (6?3_ nzky‘?-l —inlkx?z),‘pl = Elsali (6)
where e = — (V> + k7%)/2m, #; are the Pauli matrices in particle-hole space, and

@, = (;)); @2 = (}?) satisfies exactly the same equation. Separating out the depen-
dence on the “good” quantum numbers k, and k,, and performing the rotation

@, = exp (i7r1A'2 /4)$exp(—z’(ky ytk,z)),

u(x)

where @(x) = (jx; ), we easily find a solution of Eqgs. (4) and (6) which is associated
with a nonzero state density N(0):

U(x) =0, u(x)= {Cl cos(ax/€) + C; sin (ax/E)} [ cosh (x/£), (N
E(k,) = Dok, k. (8)

Here & = kp/mAy, a* = £ (k3 — k3 — k?2), and the coefficients C, and C,~¢ ~'/?
are determined by the normalization, f|#(x)|?dx = 1. The anomalous branches of the
type in (8) in the excitation spectrum, which intersect the £ = 0 level, have already
been studied in the superfluid 4 phase of *He (Refs. 14-16). Associated with branch
(8) is a state density (per unit surface area of the wall and for the two spin orienta-
tions)
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+kF
Ng (0) = fdkydkzdx5(E)|vl2/(21r)2 = (kp/A,) fk dk | (2m)* = kp/2n° Ay, (9)
F

which will be N, (0) ~ N (0)/€ = mk /27 per unit volume of the wall, i.c., on the
same order of magnitude as in a normal metal. The ratio of the state density in the
sample to the normal density in this case is on the order of the ratio of the total volume
of the domain walls to the volume of the sample.

We will now show that an asymmetric branch of the type in (8), found for wall
(4), exists and is unique for a wide class of walls, to which (4) belongs. We assume
17, = Ay/kp = const and

tin, for |x|®§, (10a)
n = :
" imaxfE for 1x) <k, (10b)
where a~ 1.

Let us find the Atiyah-Singer index /, by substituting (10) into expression (6) for
the Hamiltonian H and by treating the quantum numbers &, and k, as parameters:

M- 2 < * A 22 l
I(H) = —= tr [ dyfdx Z g} (x) { H exp (~V°H )j e, @), (11)
0 n

NEd

where @; is a complete system of eigenfunctions of )28 [See Ref. 16 for the underlying
mathematics and for references on the index theorem. We have omitted from defini-
tion (11) the so-called continuous part of 7, which is zero for this H; see also Ref. 16.]
Replacing H by E,, in (11) and using the normalization f|g, (x)|’dx = 1, we immedi-
ately find 7= 2, sgn (£, ). In other words, when one of the spectral branches E,
crosses zero, the index I changes by -+ 2. Going through the calculations [ which are
conveniently carried out in momentum space, by taking 7, as in (10b)], we find

I= sgn(aky). (12)

The value of 7 is determined primarily by the region |x| <£(A,/€-)"? i.e., lineariza-
tion (10b) is correct. It follows from (12) that the index I changes by 4 2 as the sign
of k, changes. The spectrum E(k, ) therefore has precisely one asymmetric branch of
type (8) which is associated with a state density N(0).

In summary, the presence of a linear term y7 in C, (7T) can be associated with
walls between superconducting domains. Experiments at T'< 50 mK may prove deci-
sive for determining whether the distortion of the ordinary behavior C, = BT in an
axial superconducting phase is associated with impurities or with the superconducting
domain walls.

We wish to thank L. P. Gor’kov for suggesting the problem and for constant
interest in this study. We also thank G. E. Volovik and A. V. Balatskii for useful
discussions.
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