Effect of interaction in the particle-particle channel on Gamow-Teller β^+ decay in spherical nuclei

V. A. Kuz'min and V.G. Solov'ev *Joint Institute for Nuclear Research*

(Submitted 14 December 1987)

Pis'ma Zh. Eksp. Teor. Fiz. 47, No. 2, 68-69 (25 January 1988)

The values of ft are calculated for Gamow-Teller β^+ decays of 152 Yb, 150 Er, 148,146 Dy, and 96 Pd in the random-phase approximation. The interactions in the particle-hole and particle-particle channels are taken into account. A good description of the corresponding experimental data is achieved with $|G_A/G_v|=1$ at a fixed value of the particle-particle interaction constant.

The success of the interacting-boson model, which incorporates particle-particle interactions, in describing several characteristics of low-lying collective states has attracted interest to the role played by particle-particle interactions. The simultaneous incorporation of the interactions in the particle-hole and particle-particle channels has made it possible to generate a description of two-neutrino double β^- decay which agrees with experimental data. The present letter describes the Gamow-Teller β decay of even spherical nuclei in the random-phase approximation; the interactions between quasiparticles in the particle-particle and particle-hole channels are taken into account simultaneously.

The Hamiltonian of the quasiparticle-phonon model of the nucleus³ contains particle-hole and particle-particle interactions between quasiparticles. It is a straightforward matter to work from the general equations of this model to derive equations for describing the energies and wave functions of the Gamow-Teller 1 $^+$ states in the random phase approximation, while simultaneously incorporating the particle-particle and particle-hole charge-exchange interactions, with respective constants G_1^{01} and κ_1^{01} . We write the operator which creates a charge-exchange phonon in the form

$$\Omega_{i}^{+} = \sum_{j_{p}j_{n}} \left\{ \psi_{j_{p}j_{n}}^{i} A^{+}(j_{p}j_{n};10) + \varphi_{j_{p}j_{n}}^{i} A(j_{p}j_{n};10) \right\},\,$$

where

$$A^{+} \; (j_{p} j_{n} \; ; \; 10) \; = \! \sum_{m_{n}, \; m_{p}} \langle j_{p} \, m_{p} \, j_{n} \, m_{n} \; | \; 10 \, \rangle \, \alpha^{+}_{j_{p} \, m_{p}} \, \alpha^{+}_{j_{n} \, m_{n}} \; . \label{eq:approx}$$

Here α_{jm}^+ is the quasiparticle creation operator, $j_p m_p$ ($j_n m_n$) are the quantum numbers of the proton (neutron) single-particle states, and i = 1, 2, 3... is the index of the root of the corresponding secular equation.

The matrix element for the β^+ decay of the ground state of an even-even nucleus, with a wave function Ψ_0 , into a single-phonon 1^+ state of an odd-odd nucleus, with a wave function $\Omega_i^+\Psi_0$, is

$$(\Psi_0^* \Omega_i H_\beta^1 | \Psi_0) = \sum_{j_p j_n} \langle j_n || \Gamma_\beta || j_p \rangle (\psi_{j_p j_n}^i v_{j_p} u_{j_n} + \varphi_{j_p j_n}^i u_{j_p} v_{j_n}),$$

where $\langle j_n \| \Gamma_\beta \| j_p \rangle$ is the single-particle Gamow-Teller matrix element, and u_j and v_j are the coefficients of a canonical Bogolyubov transformation. The incorporation of the particle-particle interaction in addition to the particle-hole interaction leads to an increase in the values of $\varphi^i_{j_p j_n}$ for the low-lying states. Since the functions $\psi^i_{j_p j_n}$ and $\varphi^i_{j_p j_n}$ are opposite in sign, the probabilities for β^+ transitions become suppressed with increasing absolute value of the particle-particle interaction constant.

Table I shows results calculated on $\log ft$ for β^+ transitions to the low-lying 1 + states of neutron-deficient nuclei in the random phase approximation, along with corresponding experimental resultant values of $\log ft$, found as

$$(\widehat{ft})^{-1} = \sum_{k} (ft)_{k}^{-1}$$

and taken from Refs. 5–9. In these calculations we used the same single-particle energies and wave functions for the Woods-Saxon potential and pairing constants as in Ref. 4. The values of $|\kappa_1^{01}A|$ are 1.5 times the value used in Ref. 4 in a study of nuclei from the stability valley. In these calculations we used the particle-particle interaction constant $G_1^{01} = -0.2 \kappa_1^{01}$. By increasing this constant, one can reduce the strength of the β^+ transitions to low-lying states by another factor of two without violating the conditions for the applicability of the random-phase approximation.

Let us examine the results calculated on the β^+ decay of ¹⁴⁸ Dy. The incorporation of the particle-hole interaction leads to a resultant strength of the β^+ transition which is lower by a factor of 2.65 than the prediction of the independent-particle model. The incorporation of the particle-particle interaction introduces a further suppression by a factor of two. With the value $G_1^{01} = -0.21 \, \kappa_1^{01}$ we find $\log ft = 3.9$, which agrees precisely with the experimental value. As G_1^{01} is increased, the total strength of the β transition decreases, while the corresponding sum rule is conserved.

We calculated the matrix elements for the two-neutrino double- β ⁻ decay for 128,130 Te, $G_1^{01}=-0.2~\kappa_1^{01}$, finding values in agreement with those of Ref. 2 and also in agreement with the experimental data. The need to incorporate the interaction in the

TABLE I.	Values of	log ft	for eta $^+$	transitions	from	0_{gs}^{+}	to the	1 +	states.
----------	-----------	--------	----------------	-------------	------	--------------	--------	-----	---------

eta^{+} transition	log \widetilde{ft} experimental	$\log \widetilde{ft} \text{ theoretical}$ $G_1^{01} = -0.2\kappa_1^{01}$	$G_1^{01} = 0$
$^{152}{ m Yb} = ^{152}{ m Tm}$	3.4	3,5	3.1
¹⁵⁰ Er – ¹⁵⁰ Ho	3.6	3,5	3,2
$^{148}\mathrm{Dy} - {}^{148}\mathrm{Tb}$	3.9	3,7	3,4
146 Dy $- ^{146}$ Tb	3.8	3.8	3,3
96 Pd = 96 Rh	3.3	3,3	3,0

particle-particle channel in order to suppress the strength of the two-neutrino double- β decay was confirmed in Ref. 10.

In a description of the β^+ decays of nuclei which are far from the stability valley, the axial vector constant of the weak interaction, G_A , is renormalized. In order to reach agreement with the experimental values of ft, the values $|G_A/G_v|=0.6$ –0.8, were used in Refs. 5 and 6, and $|G_A/G_v|=0.7$ –1.0 were used in Ref. 11. Our calculations were carried out with $|G_A/G_v|=1$. We reached agreement with the experimental values of ft for $|G_A/G_v|=1.25$ by increasing G_1^{01} by 3%. Consequently, calculations on the β decays of nuclei far from the stability valley are not a suitable basis for drawing conclusions about the magnitude of renormalization of the axial-vector constant of the weak interaction, G_A .

Translated by Dave Parsons

¹A. Arima and F. Iachello, Phys. Rev. Lett. **35**, 1069 (1975); Ann. Phys. **99**, 253 (1976).

²P. Vogel and M. R. Zirnbauer, Phys. Rev. Lett. 57, 3148 (1986).

³V. G. Soloviev, Prog. Part. Nucl. Phys. 19, 107 (1987).

⁴V. A. Kuzmin and V. G. Soloviev, J. Phys. G: Nucl. Phys. **10**, 1507 (1984).

⁵G. D. Alkhazov, I. Ganbaatar, K. Ya. Gromov *et al.*, Yad. Fiz. **40**, 554 (1984) [Sov. J. Nucl. Phys. **40**, 352 (1984)]; K. Ya. Gromov, in: International Symposium IN-BELM Nuclear Spectroscopy (ed. Z. Dambradi and T. Fenyes), Akademiai Kiado, Budapest, 1984, p. 269.

⁶G. D. Alkhazov, A. A. Bykov V. D. Vitman *et al.*, Yad. Fiz. **42**, 1313 (1985) [Sov. J. Nucl. Phys. **42**, 829 (1985)].

⁷K. Rykaczewski, I. S. Grant, R. Kirchner et al., Z. Phys. A322, 263 (1985).

⁸P. Kleinheinz, K. Zuber, C. Canci et al., Phys. Rev. Lett. 55, 2664 (1985).

⁹K. Zuber, C. F. Liang, P. Paris et al., Z. Phys. A327, 357 (1987).

¹⁰O. Civitarese, A. Faessler, and T. Tomoda, Phys. Lett. **B194**, 11 (1987).

¹¹G. D. Alkhazov, S. A. Artamonov, V. I. Isakov et al., Preprint LNPI, No. 1305, Leningrad Institute of Nuclear Physics, 1987.