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The evolution of the macroscopic relief of a vicinal surface of a growing (or
evaporating) crystalis analyzed. An equation is derived to describe the formation
and decay of macroscopic steps as a result of nonlinear effects of a diffusion
interaction of moving elementary steps. Depending on the extent of
supersaturation, this equation may reduce to either a Burgers equation or a
Korteweg—de Vries equation. Some particular exact solutions of these equations
which are of most interest for applications are analyzed.

1. Experiments have shown that under certain conditions during the growth (or
evaporation) of a crystal a characteristic stepped relief will form on thermodynamical-
ly stable vicinal surfaces.> Analysis shows that the observed formation of macroscop-
ic steps may be the result of the excitation of shock waves in the density of moving
elementary steps.’

In this letter we analyze nonlinear effects during the diffusion interaction of mov-
ing elementary steps on a vicinal surface, with the goal of finding a systematic descrip-
tion of the morphology of the macroscopic steps which are formed as a function of the
external parameters.

2. We consider a thermodynamically stable vicinal surface of the (1K0) type,
tilted at a small angle 6, from a close-packed singular plane. If a surface of this sort
were ideally planar at the macroscopic level, it would consist of elementary steps of
height a separated by terraces of uniform length /,~a/6,. In other words, it would
consist of equidistant echelon of parallel elementary steps with a density po=1,". A
real surface differs from an ideal surface in that there are macroscopic irregularities on
it; i.e., the local density of steps, p(X), oscillates around a mean value" p,,.

Under crystal growth conditions, each of the elementary steps moves at a velocity
which is determined by the diffusion fluxes of adatoms from the adjacent terraces:
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where D, is the self-diffusion coefficient of the adatoms, and &; (x) is the distribution
of the concentration of adatoms on terrace #, which is determined from the equation®
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under the boundary conditions

bl,., <6 &
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1
where 4, = (D, 7, )"? is the mean diffusion path length of an adatom over its lifetime
7, on the surface, and & is the concentration of adatoms which is at equilibrium with
the supersaturated vapor around the crystal. The dependence of the equilibrium ada-
tom concentration £ ° on the curvature K = a(dp/dX) is incorporated phenomenologi-
cally in (3):

E°(K) = o (1+ Kyw [kT ),

where 7 is the surface tension,  is the atomic volume, and &, is the equilibrium
concentration of adatoms on an ideally plane surface. The increment (A) in the equi-
librium adatom concentration per terrace is
50 a 3%p
A= — ] = — 2 (4)
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where o = ywal,/kT.

Calculating v; from (1) and (2), using (3) and (4), and transforming to a
dimensionless step density 7(X) = A, [p(X) — p,] (under the assumption |7| €A,p,),
we can work from the continuity equation

op 0
—_ L —— p) = 0
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to construct an equation describing the evolution of an echelon of steps of variable
density:

— —Uy— — Bn— —k— +C = 0, (5)

where 7 = vyt /A, is the dimensionless time, v, = 2D, &,/A, is the normalized velocity
of an isolated elementary step, ¥ = X /A, is the dimensionless coordinate, u, = €} o,/
3, o, is the supersaturation in the vapor phase, €, = 1/24,p, is the mean dimensionless
length of a icrrace, B = 4€} o, k = € 0, + C, and C = ywa/2kTA?. We have thus
reduced the problem at the microscopic scale, of the diffusion of atoms over terraces,
to a problem at the macroscopic scale, involving the evolution of the density of steps.

The qualitative picture of the events depends on a competition between the non-

linear effects which are determined by the third term in (5), on the one hand, and
dissipative effects (the fourth term) or dispersive effects (the last term), on the other.

3. Since the coefficient « in (5) contains two terms, it is clear that if the supersa-
turation in the vapor, o, is sufficiently high,

o, »ywapl kT, (6)
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i ] FIG. 1. a—Distribution of the density of ele-
0 7 Y(Zmr)wz_ mentary steps; b—normalized profile of a

- macroscopic step (R = Bm/2x is the Reynolds
number).

we find the well-known Burgers equation®
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for which we can derive exact expressions for the evolution of a wide range of initial
conditions (Y, 7=0)=/(Y). Here we will interpret only the two solutions which
we regard as the most interesting.

A. Under the initial condition f (Y) = m&(Y), which determines the presence of
a macroscopic step with a height of m elementary steps on the vicinal surface of
interest, the solution of the Burgers equation is a triangular wave (Fig. 1). It moves at
a velocity V= (2m7)"/? with respect to the echelon in the direction opposite the
direction in which the steps move. The evolution of the initial macroscopic step during
the growth occurs in such a way that the step density distribution remains constant in
the coordinates of Fig. 1. This statement means that a step moving at a velocity V
slowly (in proportion to 7'/?) “spreads out” over time.

B. In the case of periodic initial condition £ (¥Y) = nsin(27Y /L), we find a saw-
tooth wave (Fig. 2) with a discontinuity amplitude An which varies over time, as a
result of the evolution of (Y, 7). This result means that macroscopic steps appear on
a surface which is essentially smooth in its initial state. A discontinuity in the density
of elementary steps arises at the time 7, = L /277, and its height A% increases over

FIG. 2. a—Appearance of a discontinuity in
the density of clementary steps; b—surface
profile of the crystal, for the casc of periodic
initial conditions.
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time, goes through a maximum at 7, = L /47, and then falls off, so we have Ay =L /.

If o, <2yap,/kT, the evolution of the relief is determined by a competition
between the nonlinear effects associated with dissipative and dispersive properties,
which are related exclusively to capillary forces. The evolution of a perturbation with a
typical length 4> 4, is again described by a Burgers equation, but if A €4, we instead
find a Korteweg-de Vries equation
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In this case the structure of the effects is qualitatively different. The evolution of
spatially localized initial conditions can be described by choosing solitary-wave solu-
tions which correspond to a pertyrbation region which is moving along the surface of
the crystal:

3V/B

Y,r) = .
1) COShz{(V/C)ln(Y+V*r+u07')}. )

In contrast with the preceding case, neither the shape of the perturbation nor its
propagation velocity ¥ decays as time elapses.

"We are using two length scales: the macroscopic length scale X, a length element of which, §X, contains
some number of elementary steps §n = pdX; and a microscopic length scale x, whose length element x is
significantly smaller than the length of a step.
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