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An extension of the Penrose representation is proposed [ Eq. (4) ]. Itis shown
through the use of this extension that massless superparticles (superstrings) and
spin particles (fermion strings) in 4-space can be described in a common fashion in
terms of commuting Weyl spinors u , (7) (u“, (7,0) ) and Grassmann Weyl spinors
8,(7)(8,(r,0)), which are free of the constraints generated by local (super)
symmetries.

Reaching an understanding of the mechanism for the cancellation of anomalies in
superstrings' means establishing clear constraints between global and local supersym-
metries of Green-Schwarz superstrings and the sheet supersymmetry of Neve-Schwarz
fermion strings.” In this letter, the existence of such constraints, even at the level of the
actions of the spin® and supersymmetric* particles, is established. They correspond to
the limit of an infinite string tension. In addition, it is proved that they are equivalent
on the mass shell of the 4-space spinors u, (7).

The action of a massless particle with a spin of 1/2 in 4-space,’

]
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is characterized by two constraints, which generate the Klein-Gordon and Dirac equa-
tions,

pAp, =0, pAy, 1 =0 (2)
To describe particles with a zero spin and mass, Penrose’ introduced a spinor repre-
sentation for their 4-momenta P,; = u, A, which automatically allows the constraint
P> =0, by virtue of the relation u*u, = 0. In this paper we generalize Penrose’s ap-
proach to particles with a spin, and we introduce some auxiliary (with respect to u,)

Grassmann spinors &,. It thus becomes possible to write the Grassmann 4-vector 1,
in a form which allows constraints (2) for particles with spin:

Paq = Uqidg Vad =u 05 +0,u (3)
Action (3) and the equations of motion for the variables u,, 8, are

-o‘ i o o - - .
S, :de[uAquAA' - 2—(uA9A + GAuA)(uA9A+ O u; )1, (4)
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a) ‘;A = iﬁ(T)uA M, b éA = %X(T)uA (). (5)

Representation (4) of the action is invariant under transformations of a local sheet
supersymmetry with a real parameter a(7),

1 -

5uA=0’ 60A=EauA' 6xAA=ia(uAHA+BAL7A’), (6)

and also under U(1) local transformations, du, = iau,,66, = iad,, and transforma-
tions of the auxiliary real local supersymmetry 86, = iuu,,6u, =0 which do not
alter representations (3). Using the U(1) symmetry and the equations of motion for
u, in (5a), we can convert action (4) into the action of a supersymmetric particle**
with p,, =u, u,:

v Azdcn . Lo 7.1 —

S,,, =fdTu“u [xAA~é—(6A0A—0A0A)] =8 - (N

This action is invariant under transformations of the global supersymmetry,
i — —

du, =0, 60, =¢,, BxAA=é——(0AeA—eA6A'), (8)
and of the local Siegel supersymmetry,” which in this approach is found through a
complexification of a(7) of local supersymmetry (6):

du, =0, 80, =2au, , ox 45 =ia(O ug +u, 0, ). 9
Making use of the equality of numbers of degrees of freedom of the supersymmetric
and spinor particles, we reach the conclusion that they are classically equivalent when

the equations of motion for the spinors u,,#, in (5) hold. It follows from these
equations that the evolution of u,%, reduces to U(1) gauge transformations.

Representation (3) is a simple consequence of the condition of an inverse Higgs
effect® for the locally [(6)] and globally [(8)] supersymmetric form W, ,,, con-
structed from the superfields X, (r,7) and ©, (7,7):

Ximm) =x,;(M+ine' Y, ; (0 ,
i~ 1
0, n) =20, () + ?ne“uA ™),

where D; = E ~'(7,9)(d, + ind, ). In component form, we find from (10)

Vai =ugbi tOgui.  xyp=ugiy v 20,07 - 0,00 (b

The Penrose representation for P, along with equation of motion (5b), is found from
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(11) after the substitution X = ep — (i/2)yy and the solution of constraint (2).

The twistor approach under consideration here can be generalized to strings. As
in the case of particles, the constraint between the Grassmann variables of a fermion
string” and a superstring' (or heteroidal string) is established with the help of the
condition for an inverse Higgs effect for the sheet spinor form W,,;, (for N =2
supersymmetry, [ = [, 2):

. = . y 1 )i. { ) _:
Woad =D, X, —i(D,©, 04 +86, D 6Of ),

Xya=x, @) +iny, JE™)+ 21— (m*n, ) Fyq E™), (12)

O = 0 ™)+ ntul (™) + ;— %m0l E™).

In a superconformal gauge, with D, = E ~!/ 2(507— =Y J ), we find a repre-
,r]a

aEm
sentation for d,, x,,; and the string spinor Grassmann field ¢, in terms of the spinor
fields of a superstring, 8, and 4/, from the condition for an inverse Higgs effect, (12):

Vodd = Ua0; v 0 u;
. ‘—- . —l (13)
am Xgq =i( O 9/; 0/;' - ef; - 0,‘;') - (u};’ Ym uf;‘ )‘)

and also the equation of motion for the spinors ¢/ and a representation of F,; in
terms of p’, and #’, Armed with the constraint between the Grassmann variables of a
superstring and a fermion string, we can determine the constraint of their Lagran-
gians, as in the case of particles, discussed above.

We would like to point out yet another natural generalization which follows from
the twistor approach. Using the locally and globally supersymmetric forms W ,,, in
(10) for particles or in (12) for strings, one can construct doubly supersymmetric
superfield actions for particles and strings. For particles, this action generalizes the
action of spin superparticles and takes the form

-1 . . -

An analogous locally and globally supersymetric action for strings can be found from
the action of a fermion string® by replacing the planar covariant derivative D, X, by
invariant form (12), with the possible appearance of a Weiss-Zumino term, character-
istic of strings with a global supersymmetry:

S = dd’nlc, WeAA W ot oy (W—Z-term)]. (15)

This approach can be generalized in a natural way to spaces of dimensionality
D =6 and 10, where there is a profound relationship with quaternion and octanion
algebras with division'! and twistors for D = 10 (Ref. 10).

65 JETP Lett., Vol. 48, No. 2, 25 July 1988 D. V. Volkov and A. A. Zheltukhin 65



After this work had been completed, D. Sorokin informed us that actions (14)
and (15) are being studied independently by An. Kavalov and R. Mkrtchyan.

We wish to thank I. Bandos, V. Gershen, L. Lipatov, D. Sorokin, V. Soroka, and
V. Tkach for stimulating discussions.
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