Extension of the Penrose representation and its use to describe supersymmetric models

D. V. Volkov and A. A. Zheltukhin

Khar'kov Physicotechnical Institute, Academy of Sciences of the Ukrainian SSR

(Submitted 14 June 1988)

Pis'ma Zh. Eksp. Teor. Fiz. 48, No. 2, 61–63 (25 July 1988)

An extension of the Penrose representation is proposed [Eq. (4)]. It is shown through the use of this extension that massless superparticles (superstrings) and spin particles (fermion strings) in 4-space can be described in a common fashion in terms of commuting Weyl spinors $u_A(\tau)(u^a_A(\tau,\sigma))$ and Grassmann Weyl spinors $\theta_A(\tau)(\theta_A(\tau,\sigma))$, which are free of the constraints generated by local (super) symmetries.

Reaching an understanding of the mechanism for the cancellation of anomalies in superstrings¹ means establishing clear constraints between global and local supersymmetries of Green-Schwarz superstrings and the sheet supersymmetry of Neve-Schwarz fermion strings.² In this letter, the existence of such constraints, even at the level of the actions of the spin³ and supersymmetric⁴ particles, is established. They correspond to the limit of an infinite string tension. In addition, it is proved that they are equivalent on the mass shell of the 4-space spinors $u_A(\tau)$.

The action of a massless particle with a spin of 1/2 in 4-space,³

$$S_{1/2} = \int d\tau \left[p^{AA} \dot{x}_{AA} - \frac{i}{2} \psi^{AA} \dot{\psi}_{AA} - \frac{e}{2} p^{AA} p_{AA} - \frac{i}{2} \chi p^{AA} \psi_{AA} \right], (1)$$

is characterized by two constraints, which generate the Klein-Gordon and Dirac equations,

$$p^{\dot{A}A}p_{A\dot{A}} = 0$$
, $p^{\dot{A}A}\psi_{A\dot{A}} = 0$. (2)

To describe particles with a zero spin and mass, Penrose⁵ introduced a spinor representation for their 4-momenta $P_{AA} = u_A \bar{u} \dot{A}$, which automatically allows the constraint $p^2 = 0$, by virtue of the relation $u^A u_A = 0$. In this paper we generalize Penrose's approach to particles with a spin, and we introduce some auxiliary (with respect to u_A) Grassmann spinors θ_A . It thus becomes possible to write the Grassmann 4-vector ψ_{AA} in a form which allows constraints (2) for particles with spin:

$$p_{A\dot{A}} = u_A \overline{u}_{\dot{A}}, \qquad \psi_{A\dot{A}} = u_A \overline{\theta}_{\dot{A}} + \theta_A \overline{u}_{\dot{A}}$$
 (3)

Action (3) and the equations of motion for the variables u_A , θ_A are

$$S_{1/2} = \int d\tau [u^{A} \bar{u}^{\dot{A}} \dot{x}_{A\dot{A}} - \frac{i}{2} (u^{A} \bar{\theta}^{\dot{A}} + \theta^{A} \bar{u}^{\dot{A}}) (u_{A} \bar{\theta}_{\dot{A}} + \theta_{A} \bar{u}_{\dot{A}})], \qquad (4)$$

a)
$$\dot{u}_A = i\beta(\tau)u_A(\tau)$$
, b) $\dot{\theta}_A = \frac{1}{4}\chi(\tau)u_A(\tau)$. (5)

Representation (4) of the action is invariant under transformations of a local sheet supersymmetry with a real parameter $\alpha(\tau)$,

$$\delta u_A = 0, \qquad \delta \theta_A = \frac{1}{2} \alpha u_A, \quad \delta x_{AA} = i\alpha (u_A \overline{\theta_A} + \theta_A \overline{u_A}),$$
 (6)

and also under U(1) local transformations, $\delta u_A = iau_A$, $\delta \theta_A = ia\theta_A$, and transformations of the auxiliary real local supersymmetry $\delta \theta_A = i\mu u_A$, $\delta u_A = 0$ which do not alter representations (3). Using the U(1) symmetry and the equations of motion for u_A in (5a), we can convert action (4) into the action of a supersymmetric particle^{4,6} with $p_{AA} = u_A \bar{u}_A$:

$$S'_{1/2} = \int d\tau u^A \bar{u}^{\dot{A}} \left[\dot{x}_{A\dot{A}} - \frac{i}{2} (\dot{\theta}_A \, \bar{\theta}_{\dot{A}} - \theta_A \, \bar{\theta}_{\dot{A}}) \right] = S_{\rm sp} . \tag{7}$$

This action is invariant under transformations of the global supersymmetry,

$$\delta u_A = 0, \quad \delta \theta_A = \epsilon_A, \quad \delta x_{AA} = \frac{i}{2} (\theta_A \ \epsilon_A^* - \epsilon_A \ \bar{\theta}_A^*),$$
 (8)

and of the local Siegel supersymmetry, which in this approach is found through a complexification of $\alpha(\tau)$ of local supersymmetry (6):

$$\delta u_A = 0, \quad \delta \theta_A = 2 \alpha u_A, \quad \delta x_{A\dot{A}} = i\alpha (\theta_A \tilde{u}_A^* + u_A \theta_{\dot{A}}^*).$$
 (9)

Making use of the equality of numbers of degrees of freedom of the supersymmetric and spinor particles, we reach the conclusion that they are classically equivalent when the equations of motion for the spinors u_A, \bar{u}_A in (5) hold. It follows from these equations that the evolution of u_A, \bar{u}_A reduces to U(1) gauge transformations.

Representation (3) is a simple consequence of the condition of an inverse Higgs effect⁸ for the locally [(6)] and globally [(8)] supersymmetric form $W_{\bar{\eta}AA}$, constructed from the superfields $X_{AA}(\tau,\eta)$ and $\Theta_A(\tau,\eta)$:

$$W_{\overline{\eta}A\dot{A}} = D_{\overline{\eta}}X_{A\dot{A}} - i(D_{\overline{\eta}}\Theta_{A}\overline{\Theta}_{\dot{A}} + \Theta_{A}D_{\overline{\eta}}\overline{\Theta}_{\dot{A}}), \tag{10}$$

$$X_{A\dot{A}}(\tau,\eta) = x_{A\dot{A}}(\tau) + i\eta e^{1/2} \psi_{A\dot{A}}(\tau) ,$$

$$\Theta_{A}(\tau,\eta) = \sqrt{2} (\theta_{A}(\tau) + \frac{1}{2} \eta e^{1/2} u_{A}(\tau)),$$

where $D_{\bar{\eta}} = E^{-1}(\tau, \eta)(\partial_{\eta} + i\eta\partial_{\tau})$. In component form, we find from (10)

$$\psi_{A\dot{A}} = u_A \, \bar{\theta}_{\dot{A}} + \theta_A \, \bar{u}_{\dot{A}}, \qquad \dot{x}_{A\dot{A}} = u_A \bar{u}_{\dot{A}} + 2i \, (\dot{\theta}_A \, \bar{\theta}_{\dot{A}} - \theta_A \, \bar{\theta}_{\dot{A}}). \tag{11}$$

The Penrose representation for P_{AA} along with equation of motion (5b), is found from

64

(11) after the substitution $\dot{x} = ep - (i/2) \chi \psi$ and the solution of constraint (2).

The twistor approach under consideration here can be generalized to strings. As in the case of particles, the constraint between the Grassmann variables of a fermion string² and a superstring¹ (or heteroidal string) is established with the help of the condition for an inverse Higgs effect for the sheet spinor form $W_{\alpha AA}$ (for N=2 supersymmetry, i=1,2):

$$\begin{split} W_{\alpha A \dot{A}} &= D_{\alpha} X_{A \dot{A}} - i (D_{\alpha} \Theta_{A}^{i} \Theta_{A}^{i} + \Theta_{A}^{i} D_{\alpha} \Theta_{A}^{i}), \\ X_{A \dot{A}} &= x_{A \dot{A}} (\xi^{m}) + i \eta^{\alpha} \psi_{\alpha A \dot{A}} (\xi^{m}) + \frac{i}{2} (\eta^{\alpha} \eta_{\alpha}) F_{A \dot{A}} (\xi^{m}), \\ \Theta_{A}^{i} &= \theta_{A}^{i} (\xi^{m}) + \eta^{\alpha} u_{\alpha A}^{i} (\xi^{m}) + \frac{i}{2} (\eta^{\alpha} \eta_{\alpha}) \rho_{A}^{i} (\xi^{m}). \end{split}$$

$$(12)$$

In a superconformal gauge, with $D_{\alpha} = E^{-1/2} \left(\frac{\partial}{\partial \eta^{\alpha}} - i(\eta \gamma^m)_{\alpha} \frac{\partial}{\partial \xi^m} \right)$, we find a representation for $\partial_m x_{AA}$ and the string spinor Grassmann field $\psi_{\alpha AA}$ in terms of the spinor fields of a superstring, θ^i_A and u^i_A from the condition for an inverse Higgs effect, (12):

$$\psi_{\alpha A \dot{A}} = u_{\alpha A}^{i} \overline{\theta_{A}^{i}} + \theta_{A}^{i} \overline{u_{\alpha A}^{i}}$$

$$\partial_{m} x_{A \dot{A}} = i(\partial_{m}^{i} \theta_{A}^{i} \overline{\theta_{A}^{i}} - \theta_{A}^{i} \partial_{m} \overline{\theta_{A}^{i}}) - (\overline{u_{A}^{i}} \gamma_{m} u_{A}^{i}), \qquad (13)$$

and also the equation of motion for the spinors θ_A^i and a representation of $F_{A\lambda}$ in terms of ρ_A^i and u_A^i Armed with the constraint between the Grassmann variables of a superstring and a fermion string, we can determine the constraint of their Lagrangians, as in the case of particles, discussed above.

We would like to point out yet another natural generalization which follows from the twistor approach. Using the locally and globally supersymmetric forms $W_{\bar{\eta}A\dot{A}}$, in (10) for particles or in (12) for strings, one can construct doubly supersymmetric superfield actions for particles and strings. For particles, this action generalizes the action of spin superparticles and takes the form

$$S = \frac{-i}{2} \int d\tau d\eta E(\tau, \eta) \left[c_1 W_{\bar{\tau}}^{AA} W_{\bar{\eta}AA} + c_2 D_{\bar{\eta}} X^{AA} D_{\bar{\eta}} \Theta_A D_{\bar{\eta}} \bar{\Theta}_A^* \right]. \tag{14}$$

An analogous locally and globally supersymetric action for strings can be found from the action of a fermion string² by replacing the planar covariant derivative $D_{\alpha}X_{A\dot{A}}$ by invariant form (12), with the possible appearance of a Weiss-Zumino term, characteristic of strings with a global supersymmetry:

$$S = \int d^2 \xi d^2 \eta [c_1 W^{\alpha \dot{A} \dot{A}} W_{\alpha \dot{A} \dot{A}} + c_2 (W - Z - \text{term})].$$
 (15)

This approach can be generalized in a natural way to spaces of dimensionality D = 6 and 10, where there is a profound relationship with quaternion and octanion algebras with division¹¹ and twistors for D = 10 (Ref. 10).

After this work had been completed, D. Sorokin informed us that actions (14) and (15) are being studied independently by An. Kavalov and R. Mkrtchyan.

We wish to thank I. Bandos, V. Gershen, L. Lipatov, D. Sorokin, V. Soroka, and V. Tkach for stimulating discussions.

Translated by Dave Parsons

¹M. B. Green and J. H. Schwarz, Phys. Lett. **136**, 367 (1984).

²S. Deser and B. Zumino, Phys. Lett. **B65**, 369 (1976).

³L. Brink et al., Phys. Lett. **B64**, 435 (1976).

⁴L. Brink and J. H. Schwarz, Phys. Lett. **B100**, 310 (1981).

⁵R. Penrose and M. Mac Callum, Phys. Rep. C6, 241 (1972); A. Ferber, Nucl. Phys. B132, 55 (1978).

⁶D. V. Volkov, D. P. Sorokin, and V. I. Tkach, Yad. Fiz. 43, 222 (1986) [Sov. J. Nucl. Phys. 43, 142 (1986)].

⁷W. Siegel, Phys. Lett. **B128**, 397 (1983).

⁸E. A. Ivanov and V. I. Ogievetskii, Teor. Mat. Fiz. 25, 164 (1975).

⁹Kowalski-Glikman et al., Phys. Lett. B201, 210 (1988).

¹⁰E. Witten, Nucl. Phys. **B266**, 245 (1986).

¹¹R. Gursey, Preprint YTP-87-25, 26-Yall., 1987.