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Equations determining the shifts and widths of the Rydberg states in a strong
electric field (for an arbitrary atom) and the scaling ratios for near-threshold Stark
resonances with n, ~n> 1, n, and m ~ 1 have been obtained. These scaling ratios
have been confirmed experimentally.

1. The study of the Rydberg states of atoms and molecules has recently produced
considerable interest. The resonances in the cross sections for photoionization of
atoms in a static electric field &€ at n = 15-40 and E~0 have been observed experi-
mentally.'™ Numerical calculations for hydrogen atoms®’ have shown that the posi-
tions and widths of these resonances coincide with the complex energies E‘"""™
= E, — il'/2 of the Stark quasisteady states. This situation makes it possible to verify
experimentally the theory of the Stark effect in strong fields.

We have developed an analytic theory of the Rydberg states for an arbitrary atom
[see Egs. (2) and (3)]. Using 1/n expansion, we obtained scaling ratios for the near-
threshold resonances. These scaling ratios agree well with experiment and can be used
for identification of the resonance quantum numbers.

We will use atomic units (unless specified otherwise); n = n, + n, + m + 1 is the
principal quantum number of the level, where |, n,, and m are the parabolic quantum
numbers (m>0).

2. In calculating the energy of the states (n,n,m) with n>1 and m<n, we will
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use the semiclassical quantization conditions with allowance for the corrections on the
order of #* (Ref. 8), approximate separation of variables in the region > r,," and the
“hidden” symmetry of the Coulomb field.” Let B, , denote the separation constants,
and € and F denote the reduced energy and the reduced external field

€= 22mE(MMm = ¢~j¢" |
" _ 2mfnn, m) = 4 ()
€' =M M  p=ptg

where T (%) is the width of the (n,n,m) level which is associated with the
ionization of the atom by the field 4. We can then determine €, f,, and /3, from the
equations

) F
‘31("6)_1/2f(21)" ‘g’? —€)"¥2g(z,) = v,

F
ﬁz("e)— 1/2f(22) + §n_2( _e)_3/2g(22) = Vg R (2)
ﬂl + 52 = 19
whose derivation will be discussed below. Here z, = — 163,F /€%, z, = 165,F /€%,

m+1
2

5
Vi=(1_;)(ni+ ) [n,wherei=1or2,

and 8 = §(n,n,m) is expressed in terms of the quantum defects'’ §; for a free atom,

S(uymgm ) = = T (CHMy F(2A+1)5,, (3)

m;Im

J=n—-1/2, M= (n, —n,+ m)/2, and f(z) and g(z) are expressed in terms of
the hyp ometric function: f(z) = F(1/4,3/4; 2; z), g(z) =2/3F(3/4, 5/4; 1,
z) + 1/3 r \3/4;5/4; 2; z). The parameter & takes into account the difference between
the atomic field and the Coulomb field (in the region rSr, ). The presence of the
Clebsch-Gordon coefficients in (3) is attributable to the hidden symmetry group of
the hydrogen atom: SO(4) = SO(3)OS0O(3) and L =J, + J,, where L is the orbital
angular momentum and J, are the generators of one of the SO(3) subgroups. Since &,
decreases rapidly with increasing / (Ref. 10), the sum in (3) actually retains several
leading terms. Asymptotically 6(n,n,m) « 1/n—0 as n— «o, but at n~ 30 they are not
yet small.”’

Since the corrections which were ignored in (2) are no greater than n* (for
m = 0), system of equations (2) is accurate enough for the Rydberg atoms. In the
limit & —0 solution (2) is in agreement with perturbation theory up to terms of order
%7 inclusively. Using (2), it is possible, however, to consider the case in which the
field is strong (to within values which are comparable with the field at the electron
orbit, n*% ~1).

Although Eq. (2) can be solved numerically, at #> 1 it is reasonable to use the 1/
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n expansion. For the states with n,~n> 1, n, and m~1 we find

p 1
en,n;m,_=e°+;€1+;2(P262+52+m2772)+...,' (4)

where p = 2n, + m -+ 1. In the limit #— « system (2) reduces to the equation
(— €)' =F(1/43/4 2~ 16F/e"), (5)

whose solution will be denoted in terms of €, =¢,(F). It is easy to show that €,
increases monotonically along with £, crosses the boundary € = O at £ = F, =0.3834,
and remains real for all Fin the range 0 < F< co. At F> F, the next terms of the 1/n
expansion acquire an imaginary part. The terms of order 1/# and 1/n” in (4) in this
case are expressed in terms of €, (F) and its derivatives. Taking advantage of this
situation, we find the scaling ratios

L1~ p A
gimmm) = e, (n'e) ,  Timmm/ < ‘(1 B 7) Yo ('8, (6)

~3

where i =n,+ (m +1)/2 =8, y,(F) = 8(F — F, ) (F(d /dF) — 1)€}/?, and E>0.
In the subthreshold region £ <0 we have

. 1 ~ . -
g[minam) = so {6y (' &)+ n(@En, ¥ &)= @/n, ) n(ny, &)}, (D

where n, =i +p/2=n—35, and 7(F) = [ — €,(F)]*’%. Equations (6) and (7)
have only one universal function €, (F), which is determined from (5).
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FIG. 1. Scaling for the above-threshold
B resonances. Solid curve €,(F),
Gy = 2WE(EY, F=i%.
azt The experimental points are explained

in the text proper.
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FIG. 2. Scaling (7) in the subthreshold region. The data for hydrogen (open circles) were taken from Refs.
4 and 5. The notation is otherwise the same as in Fig. 1.

3. Comparison with experiment. Satisfaction of scaling (6) for E (""" is verified
in Fig. 1. The experimental data points are: O—the (#n,, 0, 0) states of the hydrogen
atom” for € = 6.5 and 8.0 kV/cm; [J—the (#,,0,1) and (#,,1,0) series in the hydro-
gen atom®*; + —the data for rubidium' for & = 2.189 kV/cm (the four left points)
and also for & =4.335 and 6.416 kV/cm; *—the (n,,0,0) states for sodium,”?
% =2.15 and 4.46 kV/cm.
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FIG. 3. Effect of barrier penetration on the calculation of the level width €] = 2" 199 Curve A—
Solution of system (2) in the 1/ approximation for v, =1 — v, = 1/2n (here €] =0 for F< F, ); curve
B-—solution of system (2) using replacement (8).
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Satisfaction of (7) for the subthreshold resonances is illustrated in Fig. 2."**°

The number of experimental points in Figs. 1 and 2 could easily have been increased.
In all cases we have considered the scaling ratios have been confirmed with good
accuracy, both for hydrogen atoms and for other atoms.”

With regard to the resonance widths, at F> 0.4 the experimental points* conform
well, according to (6), to the universal curve, but there is a divergence from scaling at
lower values of F. Here the correction to the quantization due to the finite barrier
penetrability should be taken into account. This procedure reduces to the substitution

1 1 1 1
Vo> V= —{—Iil'(=+ia)/ (—-ia)J(1+e ") ~alna ta},
2mn 28 2 2

(8)

where a = (1/7) {7 |p,, |dn(11, < 17 <7, is the subbarrier region). In the limit & —0 we
can thus account for the well-known® threshold behavior of the widthsT"¢"™=™ (&). A
numerical solution of system (2) with allowance for (8) gives a correct interpolation
between the weak-field region and the scaling region FZ F, (Fig. 3). We will compare
the calculations with experimental data on the Stark resonance widths in a more
detailed paper.

We wish to thank A. V. Sergeev and A. V. Shcheblykin for many discussions in
the course of this study and for assistance with the numerical calculations.

" Here r, is the radius of the atomic core, which is assumed to be small in comparison with the mean radius
of the Rydberg states, ro n’.

? 1n a rubidium atom, for example, 8(n — 1,0,0) = 0.768, 0.538, and 0.414, when n = 20, 30, or 40.

*)In the case of hydrogen, the quantum defects vanish. In other cases, it is important to take 8(n,n,m) into
account in Egs. (6) and (7). To save space, we will omit here some details which are important for a
correct interpretation of the experimental spectra for rabidium.'
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