Linear wave conversion in a plasma without a hybrid
resonance

E.Z. GusakovandA.D. Piliya
A. F. Ioffe Physicotechnical Institute, Academy of Sciences of the USSR, Leningrad

(Submitted 19 April 1988)
Pis’'ma Zh. Eksp. Teor. Fiz. 48, No. 2, 71-74 (25 July 1988)

A new resonant mechanism for the slowing of electrostatic waves in a plasma with
periodic variations has been observed.

A hybrid resonance is an interesting effect in the electrodynamics of plasmas and
also one of practical importance. Mathematically, a hybrid resonance is a singularity
of solutions of the equation
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where @(r) is a scalar potential, and € is the dielectric tensor of the cold plasma. The
singularity arises because the characteristics of this equation intersect at the singular
point or asymptotically approach each other.' In the present paper we show that a
phenomenon analogous to a hybrid resonance can occur in a two-dimensionally inho-
mogeneous medium which is bounded along one coordinate and which is pertodically
inhomogeneous along the other, at frequencies at which there is no “ordinary” hybrid
resonance. The most important example of this geometry is an axisymmetric toroidal
configuration. Here, however, we will restrict the discussion to the most graphic exam-
ple: the propagation of an oblique plasma wave in a plane plasma waveguide with a
slight periodic variation along the z axis, which is the direction of the external magnet-
ic field. This wave is described by wave equation (1), which takes the form
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where € = €,.., and 7 = €,,. Let us assume that € and 7 depend on z periodically with a
period of 27/« and that the relation €> 0 holds. The transparency region, 17 <0, is
confined to the interval x,<x<x,. We consider solutions of Eq. (2) of the nature of
waveguide modes which are traveling along the z axis, and we consider modes for
which we can use the geometric-optics approximation. In this case the propagation of
waves can be described by means of ray paths, which in this case coincide with the
characteristics of Eq. (2). In a waveguide configuration, a ray path is successively
reflected from the “walls” x, and x,. We denote by z; the coordinate of the point of the
ith encounter of some path with a wall, and we denote by A, the distance to the next
such point {the (/ + 1)st]. In a medium which is inhomogeneous along z, the shift will
be a function of z,, and the dependence will obviously be periodic. At a small “modu-
lation depth,” we need retain only the first two terms of an expansion in a Fourier
series: A, (z;) = Ay + b sin kz, (we are choosing an origin for the z scale in such a way
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that there is no constant phase in the argument of the sine). The evolution of the ray
path is then described by the mapping

z;,, =2%; ¥ Ao + bsinkz,, (3)

whose properties are well known.? Under the condition
kg = 2mn|<klb|, n=12.. 4)

there are two periodic paths (of such a nature that the relation z, _, =z, 4+ 27n/k
holds), one of which is stable. All the other paths approach it exponentially. The wave
vector of the wave grows in the same fashion. This behavior of the ray paths is similar
to that in the case of a hybrid resonance in a plane-layer medium and with an angle
between the direction of the variation and the magnetic field which is different from 0
to 7/2. The existence of any asymptote for the ray paths, which are also equipotentials
in the case of Egs. (1) and (2), means that any solution of Eq. (2) will have a
singularity as z— oo. The infinite slowing of the wave halts as a result of spatial disper-
sion, however. To analyze this case, we will put Eq. (2) in a more specific form,
setting 7 = — 7,(x) [1 4 B(x)sin xz], and € = 1 and making a thermal correction in
it. The corresponding dispersion relation then takes the form

v k2
D(t,k)/=0, D=k - nol;+ B(x)sinkz + 3 Tj]k: , (5)
L w
where v} = T,/m,. The ray paths are known to be the paths traced out by a mechani-
cal system with a Hamiltonian D. To analyze them, it is convenient to make a canoni-
cal transformation from the variables x, k., to the new variable a(x), which varies

monotonically along the path, and to its conjugate momentum £k, in accordance with

da — -—
7\;; =ty/n, M, =tVnok,

where A is a constant. The old coordinate x is a periodic function of . We choose the
constant A in such a way that the period of the function x(«a) is 2

1% —
= —f /Modx
m .
Xy

In this case we have A, = 274, and the resonance condition Ay = 27n takes the form
x4 = n. Expanding the periodic function S(x(a)) in a Fourier series, and noting that
we have z = Aa in the zeroth approximation (in the small parameters 5 and k,v; ), we
can retain in the Hamiltonian the oscillatory resonant terms which are the very
slowest: B(a)sin xz—f,, sin §, where

§=na—«kz, B, = > [ B[x(@)]cosnada.

After this simplification, we carry out the canonical transformation (a,k,)(zk,)
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—(a, p), (§,k). Here k=k,/x; p =k, + nk,/«; and the function D becomes

— -2
D =[uk" — k*(1+ B sin) — vk* (6)
KA oon

where ¥ = 3v% x°/@”. Since the Hamiltonian does not depend on @, the momentum is
conserved, and the equation D(§,k, p) = 0 makes it possible to construct phase trajec-
tories k(&, p) directly. The periodic trajectory described above corresponds to the
curve p = 0; the “cold” waves (yp° < 1) slow to k, ~ (@/v, )\/[)T,,. The behavior of the
curves can be interpreted as a linear conversion into a “warm’ mode near a stable
periodic path and an inverse conversion into a cold wave. The analysis above is based
on the use of the geometric-optics approximation, which is difficult to defend rigorous-
ly in the case of a two-dimensionally inhomogeneous medium. We do note, however,
that the conclusion that the slowing of the wave undergoes an exponential growth
under condition (3) can be reached even without an analysis of the behavior of the ray
paths.

In the case S(x) =0, the field ¢ (x,z) can be written as a superposition of natural
waveguide modes:

pix,2) = 2 A4, ¢ (x)exp (ik, z). (D
m
where
2N rox i m+ 1y
@, =\/7T—n(,’1’°cosljcm ! \/nodx'-—'z} k, = \ 2 m>o0
Xl !

This representation is also valid when a slight period modulation | 5| <1 is imposed on
the waveguide. In this case, however, the modes interact with each other, so their
amplitude varies along the length of the waveguide, 4,, = A4, (z). The interaction
between modes should be particularly effective when the resonance conditions hold for
the scattering of modes by a long-wave modulation: &, , , — k,, = «. It is easy to see
that this condition is the same as condition (3) in the limit #—0 and holds for an
arbitrary mode index m. Assuming the deviation from resonance to be small, |%,, , ,
— k, | <k, we find a system of equations describing the evolution of the amplitudes
A,,. Substituting (7) into (2), and ignoring the terms which are small and those
which oscillate rapidly, we find

m

oC . B k
E”l —tkmﬁn5Cm= . n[cm+n"Cm—n]9 (8)
where

KA
C, =A, k_ exp(if 6k z) &= 2(1 - ;—) g, .

The Fourier transformation C,, (z) = §* _ C(v,0)exp| — (ik,, A /n)v]dv reduces the
system of recurrently coupled differential equations to the equation
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C oC
— + (sinv — §) — +cosvC = 0 (9)
at v

where t = nf3,z/2A. The solution of Eq. (9), C(v,1), can be expressed in terms of the
“initial condition” by the method of characteristics:

- sinyy — 8
v, t) = Co(vy (v, )

T e o CO(V) = C(V, 0) . (10)
siny — &

In the case |8| < 1, the characteristics of Eq. (9), v,(v,f), are given by

-y

V1 -8 cosp+t1 — 8sinv ~J1-6%t /1 —8%cosyy + 1 — Bsiny, an
= e 5
siny — 8 sinp, — &
and in the limit #— o they converge on v =1v,, cos v, = — 1 — &% Using (10) to

determine 4,, (z), and substituting the resulting expression into (7), we find the distri-
bution of the electric field E, = dg /dz in the waveguide:

E{a(x),z] =E* + iE ", (12)

N 1 sinp
grt= 2070 ( i <*

2 siny— ?

vEKZEna

where O<a<m, ¢(a 4 7k,0) is determined in terms of ¢(a,0) with the help of (7),
and we have v, = v,(v,¢) according to (11). This expression describes waves which
are coming into the observation point after reflection from opposite “walls” of the
waveguide and which are traveling in opposite directions in the z =0 cross section.
The factor in front of the braces (curly brackets) describes an exponential intensifica-
tion of the field as the characteristics converge and the wave slows.

In conclusion we would like to stress that the singularity which we have been
discussing here in the example of an electrostatic plasma wave is actually a character-
istic of any wave system of the hyperbolic type with parameters which depend periodi-
cally on one of the coordinates or the time.
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