Alfvén shock wave trains with a dispersion
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Solutions in the form of nonlinear structures—shock waves-—are obtained for
Alfvén waves which are excited by a long-wavelength source and which propagate
along the magnetic field. The dispersion and viscosity are taken into account in the
solution.

Intense MHD fluctuations observed in solar wind in front of the leading edge of a
shock wave are caused by the cyclotron instability of an energetic-particle beam."” In
the case of a comet shock wave the heavy-ion beam is formed as a result of photoioni-
zation of a gas flow that originates in the nucleus of the comet.>* The MHD oscilla-
tions in front of the leading edge of a shock wave of a planetary magnetosphere are
excited by the energetic protons of the solar wind which are reflected from the shock
front.” Finally, similar phenomena occur in front of the leading edge of a shock wave
of cosmic rays.” The MHD fluctuations in this case are excited by the accelerated
particles which propagate through the shock front toward interstellar plasma.

In all the cases mentioned above the cyclotron instability leads to an excitation of
long-wavelength Alfvén waves with the wave numbers ky~ @, /v (@, is the cyclo-
tron frequency of the energetic particles, v is the velocity of these particles, and v>v,,,
where v, 1s the Alfvén velocity). A nonlinear torsion of the wave spectrum gives rise
to short wavelength scales k~wy, /v, (@y, is the cyclotron frequency of the solar
wind protons) and to a state in which the absorption of Alfvén waves by thermal
protons becomes important. This situation leads to the formation of a characteristic
wave structure which can be called Alfvén shock wave trains. In the long-wavelength
part of such a wave train the wave is usually polarized linearly and sometimes ellipti-
cally. As a result of torsion, a short-wavelength oscillatory structure forms in the front
part of the wave profile. This structure is always a counterclockwise-polarized circular
wave.

In the present letter we will show that a structure of this sort can be obtained for
Alfvén waves which propagate along the external magnetic field if the nonlinear effects
of density modulation by the rf pressure, as well as the dispersion and viscosity, are
taken into account. The viscosity simulates the damping of short-wavelength Alfvén
waves.

Taking into account the effects mentioned above, we can write the following
equation for the magnetic field components of the Alfvén wave’:
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In this equation we used the following dimensionless variables:

79 0021-3640/88/140079-04%$01.00 © 1988 American Institute of Physics 79



b = B, +iB ;= i Wy 1V, ¢ - wHi(Z_vAt) )
Bo ' 4 v v
v, Wy w

e=24 _H v = 2R, —HP ,
v Yy, Uy

where B, is the external magnetic field, and R, is the effective mean free path. The
small parameter € gives the ratio of the characteristic dispersion (dissipative) length
scale to the instability scale. In writing the source on the right side of (1) we have
assumed that because of the cyclotron instability, only the linearly polarized first
harmonic of the waves is excited. Accordingly, we assume

@) = Seil¥+9) + g*e —ift+e) | (3)

where Se¥ = ¥, — iAw,, and ¥, and Aw, are the increment and the shift of the pump
frequency, expressed in dimensionless time units determined from (2).

We seek steady-state solutions of Eq. (1) in the form
Y, 1) =aff)e®® ,  E=¢ - ur.

From (1) we then find the following system of equations for the amplitude and phase
of the wave:

do da
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In these equations a, and « are the amplitude and phase of the unstable harmonic:

ia 1
2n

s b®e fat. (5)

The solution of the basic equation (1) for this case is shown in Fig. 1. This equation
consists of linearly polarized parts, in which the amplitude varies smoothly and which
are divided by discontinuities (shock wave fronts). At y =y, and y =7 + y, the
position of the discontinuities is chosen so that the condition
(b)Y = (172m)§7 _b(&)dE = 0 would be satisfied. In the regions in which the solution
varies smoothly the amplitude and phase are determined from the relations

WX+ w
a=2.\/-§—sin - 6 =0, 0 < X< X,

w

X
a=2\/3—sin-3— , 0 =—-7m, X< X< 7T+X,

WX -7 »
a=2\/3—sin T 0=0, X +7a<XxX<2m.

Solutions of this type can be found if the following condition for the nonlinear phase-
velocity shift is satisfied:

u = 3(8Sa;)?’3. (6)

Within the limits of the discontinuity (y =~ y,) the evolution of the magnetic field can
be described by a system of Hamilton’s form of equations of motion, with allowance

FIG. 2.
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for dissipation
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where ¢ = a cos 8, p=asin 8, and the role of the Hamiltonian is performed by the
function
372

u 1 u
H=o (0" +a*)= ;@ +a'f + 2(?) qsinX; -

The phase diagram of system (7) at v =0 and the trajectory for v> 0 are shown in
Fig. 2. This system of equations has two fixed elliptic points ¢ = ¢, ¢»; p = 0 and one
hyperbolic point g =g p=0, q, = 2Ju/3 sin[y, + 2#n — 7)/3]. As a result of
dissipation, the system transforms from an unstable equilibrium a,,,, = ¢, to a stable
equilibrium a,;, = — g,. The total change in the phase within the discontinuity is
— 7(1 4 2m), where m is an integer. The direction of rotation near the stable equilib-
rium a,,, is opposite to that near the unstable equilibrium q,,,. After the system
crosses the separatrix .5 (Fig. 2), the phase monotonically. This process corresponds to
the counterclockwise polarized wave within the shock front, in which the magnetic
field rotates clockwise, while the wave profile, along with the plasma, moves with
respect to the observer.

Using relation (5), we can relate the pump amplitude and phase @, and ¢ to the
position of the discontinuity y,. In particular, the solution with a zero frequency shift
(@ = 0) would be of interest:
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