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A qualitative description of a strong wave turbulence in the absence of a wave
collapseis given. The processes which lead to an increase in the amplitudes of the
solitons as their number is reduced play the central role in the turbulence
mechanism. In the conservative nonintegrable systems the soliton is a statistical
attractor. The described picture is confirmed by a direct numerical simulation.

1. There is no doubt now that the development of a strong turbulence in various
physical situations is accompanied by the formation of space-time structures which
can be described in the coordinate space. The nonlinear Schrodinger equation is a
sufficiently universal wave-turbulence model (see, e. g., Refs. 1-3):

iy, + Ay + 1YL Y =0 (1)

For f(u) >0 and f'(u) >cu'> /¢ (d is the dimensionality of space) the structures
described by (1) are wave collapses, whose theory is currently being developed rapidly
(see Refs. 4-6 and the literature cited there). Equation (1) has a soliton-type solution

— j 2
lp(l',t} = g()\; f)exle—(vr) + 1(7\2- %);l ) ?: r—vt,
L

where the function g is a solution of the equation

Ag + f(g%)g - Ng =0, Vgl“ =0, g - O (2)
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In the collapsed state the soliton is unstable and in the turbulent processes it does not
appear at all. In contrast, if the soliton is stable [if it is of the form sd < 4 in the case of
a power-law nonlinearity f (u) = u*> (Refs. 1-3)], the solitons must play the princi-
pal role in the turbulance described by Eq. (1), i.e., the turbulence must be of a
“soliton” type.” The nature of this turbulence is of fundamental interest. Equation (1)
has integrals of motion

N=[1yl*dr, H=[[IVYI>=¢(1y¥I2)]ldr (97u) = f(u)) (3)

Disregarding the quantum effects, the tendency of the energy toward uniform distribu-
tion based on the degrees of freedom causes the integral A (the Hamiltonian) to
localize in the short-wave region. The system in this case can form a condensate: a
uniform field accompanied by small-scale fluctuations. At /' (u) >0, however, the un-
stable condensate decays into solitons in the absence of a collapse. In the special
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integrable case f(#) = cu(c>0), the solitons scatter on each other elastically and
their number is conserved. In the general nonintegrable case the blending of solitons is
preferred from the thermodynamics standpoint.>® As a result of blending of the soli-
tons, a part of the integral H, which is carried away by free waves, is set free. The
integral of the quasiparticle number N remains primarily in the soliton. The soliton in
this case decreases in size. Accordingly, in the solution of the problem on the evolution
of a given initial distribution the soliton is a kind of statistical attractor: The state
decays asymptotically with respect to time into a soliton and a set of slightly nonlinear
waves.

2. To directly prove this conclusion, we have numerically integrated the one-
dimensional equation (1) over large evolution times for different degrees of nonlinear-
ity of f (u). The problem was solved for a fixed segment O<x<L with periodic bound-
ary conditions and perturbed uniform initial conditions
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In Eq. (1) the increment of the modulational instability of the condensate
Yoexp[if (|9]|*)] is given by

y&) =kvV2A-KZ A= u——> . )

This increment peaks at k= +/A; it iS ¥y, =A4. The corresponding modulation
length, A,0q = 27/y/A, determines the number of solitons formed at ¢> ..., n~L /
A
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In the case of a power-law nonlinearity f (u) = «*?, the solution of Eq. (2) for
d=1is

? As
g(‘c’)=(?\\/l+§— /cosh—z——E)”5 . (6)
In this solution we have
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The simulation is adequate if
kmod<L<M)\", (8)

where M is the number of points in the integration segment, and 1 ~'~ N~ jg the
size scale of an.asymptotic soliton. This fairly stringent condition imposed on the
parameters of the numerical model and initial state (4) was always satisfied in our
calculations. The calculations were carried out on the ES-1037-ES-2706 multiprocess-
ing complex, ICR, Academy of Sciences of the USSR. Equation (1) was integrated,
using the BPF algorithms, in accordance with the procedure similar to that used in
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Ref. 9. To check the work, we used the integrals of motion in (3). In addition to the
power-law nonlinearity, we analyzed systems with a saturation: f (u) = u(1 — au)
and f(u) =u(l +bu)/(1+ byu).

The results of the calculations showed that the space-time dynamics of the system
predicted above is in complete agreement with the qualitative picture of the soliton
turbulence. Figure 1 shows results for /(1) = Ju. The development of modulational
instability gives rise to the formation of a soliton grating with a period of order 4,,.4
(Fig. 1a). With further evolution, the system decays progressively more efficiently
into solitons and slightly nonlinear free waves. The interaction of solitons with each
other and with free waves accounts for the gradual transfer of waves from the weak
solitons to stronger solitons. As a result, the amplitude of the solitons increases as their
number decreases (Fig. 1b). At large time scales the system reaches a state in which it
has a single soliton of small size and large amplitude (Fig. 1¢). The measured velocity
v of a single soliton is much lower than the group velocity (dw/dk), _ ;, as should be
the case : A soliton at rest generates the lowest energy. An asymptotic soliton is
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adequately described by an exact solution of (6), in which A is calculated from the
measured amplitude. The free waves account for about 15-20% of the initial integral
of N.

Similar results were obtained in the case of other types of nonlinearities. A nonlin-
earity of the type f (1) = u(1 + 0.1u/1 + 0.5u), for example, is shown in Fig. 2. The
qualitative picture of the evolution of the turbulence is in agreement with that de-
scribed above.

3. In the evolution of the persistent soliton turbulence the nonintegrable system is
attracted to the soliton solution, making it possible for the statistic attractor to an-
nounce the soliton. In real, extended systems with a dissipation the soliton amplitude
increases and the size scale decreases to the point at which small-scale damping begins.
This means that the soliton wave turbulence agrees qualitatively with the turbulence in
which the energy is transported by collapsing cavities.
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