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Stochastization of current carriers in semiconductor superlattices in an external
electromagnetic field has been detected. The characteristics of the external fields
and the parameters of the semiconductors, which are necessary to achieve this

effect, are estimated. The macroscopic manifestations of this effect are discussed.

Semiconductors with superlattices are one of the most interesting and promising
subjects of present-day solid-state physics. Despite the fact that these semiconductors
have been studied extensively (see, for example, the review article by Bass and Teter-
vov'), the enduring interest in superlattices is attributable to the wealth of physical
properties of this system which are fundamentally not obtainable in conventional semi-
conductors.

Assuming, for example, that the charge carriers with an effective mass m* are
situated only in the lower minizone of width A, we can use the following expression to
accurately approximate the dispersion relation of these carriers':

€ =€ + (p; + p;)/ 2m* - Acos(p,d/ 1),
where €, is the position of the minizone, d is the period of the superlattice, and the z

axis runs in the direction of the superlattice axis.

In the present letter we will demonstrate that a new effect, which involves the
stochastization of electrons in an external field, can in principle be observed.

The equation for cyclotron oscillations in an external electromagnetic field, whose
constant component 4, is directed perpendicular to the superlattice axis, is the equa-
tion for the mathematical pendulum under the influence of an external force.' This
equation can be written in the form

H=f(H:O)t) ©= wH), )

where H = 1* — W cos k is the adiabatic integral with f=0, © is the oscillation
phase,

K = P,d/h=2arcsin ((H/2W?2 Y'? sin(©;(H /2W2)'?)),

Wo = edho~/ A/cos ifm*,  W(H) = TWq [2K(v/ H/2W? ) |
Here K (a) is the elliptic integral and dH /dt=H.
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The behavior of f(«;t), a perturbation in a weak alternating field, is generally
determined by the characteristics and geometry of this field and by the parameters of
the superlattice. To illustrate this effect, we restrict the discussion to just one type of
perturbation.

Let us consider an electromagnetic wave propagating along the axis of the super-
lattice

€ ke
E = (0 Ey;— Y2 F Ycos(wt—kz), H =(hy — —E_;0;0xos(wrt —kz ),
e 7 w Y

2z

where € is the dielectric tensor. The external force f (x;¢) in this case is
hoE e?d
fl:t) = — —O*J’-ﬁ—— w(H}cos(wt — kz J, (3)
mc

and the conditions under which this force is small are E, €h,fi/m*cd, o <w,.

The dynamic system (2) near the separatrix (H = 2W7]) is known to behave
chaotically” in a certain energy region of the external parameters. To find this energy
region, we will make use of the Chirikov criterion.* In the case of the perturbation
chosen, (3), this criterion is

eEo

where § =1~ H/2Wj.

Stochastization accounts for a rapid mixing (at a rate on the order of 7o = W ')
of the phases® ®. The distribution function P(H;?) is introduced to describe the dy-
namics of the system at times > 7, which involves a slow destruction of the integrals
of motion H. In the random-phase approximation this function satisfies the Fokker—
Planck-Kolmogorov equation® with the diffusion coefficient

de3hoE 2

hem T2 AV2 \/2H/K(\/H/2W; )- (5)

D(H) =7

The Fokker-Planck-Kolmogorov equation has a new time scale 7, =~ 10°7¢ X (W,/
W)“(Ey /hy)?. This time scale corresponds, as will be seen below, to the energy redis-
tribution of electrons.

Since stochasticity is a qualitatively different kind of motion of dynamic nonlinear
systems, the kinetic properties of the superlattices should also change qualitatively.
The equation of motion (2) describes the characteristic features of the kinetic equation
for the electron distribution function f (rpz) in the relaxation-time approximation.
Consequently, if condition (4) is satisfied, the characteristic features become rando-
mized. This randomization in turn leads to a momentum and energy redistribution of
electrons.

Randomization of phases of the nonlinear oscillator (2) corresponds to a uniform
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momentum distribution with respect to the direction. The stochasticized carriers
therefore have no effect on the transport processes. The y and z components of the
conductivity tensor of the superlattices, for example, are expected to decrease, since
the stochastization in the geometry suggested here involves the y and z projections of
the quasimomentum.

In calculating the kinetic coefficients we now integrate over the energy only to the
energy € corresponding to the lower boundary to the stochastic layer, rather than
over the entire minizone. To estimate the current under these conditions, we can use
the equation

€ A
Ig=I,LT= [ €2 f(e)de/ | € f(Ode , (6)
0 0

where I, is the current in which the stochastization is ignored and f{¢) is the Fermi
distribution function.

Correct mathematical determination of €5 is a very complex problem which does
not have a fundamental solution at this time.”* We will therefore consider its estimat-
ed value, assuming that the region of global stochasticity is directly contiguous to the
region of regular motion (the region of local stochasticity is ignored in this case).’

In the quasimomentum space the ceiling of the minizone A is equal to the separa-
trix of Eq. (2). The lower boundary of the stochastic layer € is determined by the
width of the overlapping resonances 5. Assuming the width of the layer to be small to
the extent that the perturbation is small and expanding the dispersion relation in a
series, we obtain €5 = A(1 — &7).

The next step of the kinetics of the process involves finding an equal energy
distribution of the electrons stochasticized as a result of the destruction of the integrals
of motion. The time scale of this process is 7.

"Here are some estimates. For the superlattices with d= 100 10\, A =50 meV,
m~=0.1m* and fields A,~100 G, E~1 V/cm, w=~10% Hz, and T=300 K, we have
7o =107 "' s (for comparison, we note that 7, is on the order of the relaxation time),
Ty ~107%5, §=0.2, €, =48 meV, and I"=0.89.

In describing the stochastization of the carriers in the superiattices we ignored the
effect of the change in the conductivity on the propagation of the perturbing electro-
magnetic wave. This effect, appreciable in the case of strong fields, requires a self-
consistent analysis. In general, electrons from other minizones and deviations from
random-phase approximation caused by the boundaries of the stochastic layer and by
the islands of stability should also be taken into account. Principally numerical calcu-
lations are now being used for this purpose. These factors and also other types of
perturbations which give rise to stochastization of the carriers in the superlattices will
be analyzed in a separate paper.
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