Berry’s phase and the chiral anomaly

A.S. Gorskil
Institute of Theoretical and Experimental Physics

(Submitted 25 May 1988)
Pis’'ma Zh. Eksp. Teor. Fiz. 48, No. 3, 113-115 (10 August 1988)

There is a correspondence between the global chiral anomaly and the chiral
properties of a fermion Berry’s phase.

The discovery of nontrivial adiabatic phases'” has attracted considerable interest
since it has opened up a unique opportunity to find a unified description of effects
which differ in physical nature (see Ref. 3 for a review), including the guage anoma-
lies in quantum field theory.*® In this letter we show that the global chiral anomaly
owes its existence to a fermion Berry’s phase.

For definiteness we consider quantum chromodynamics (QCD) with a single
massless quark. The Langrangian in Minkowski space is
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where 4, is the gluon field, G, is the stress, ¢ is the quark field, ¥ is the regulator
field, and g is a coupling constant. Below we assume the gauge 4, = 0. In our case the
role of the “slow” variables with respect to the quark degrees of freedom is played by
the static gluon field A(x). The Hamiltonian of the fermions depends on the time
through the time dependence of the external fields, so when periodic boundary condi-
tions A(0) = A(T) are imposed, we have a closed contour in the functional space of
static fields. A quark determinant was derived in Refs. 5 in the form
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where the second term has the meaning of a Berry’s phase, and the summation is over
the eigenstates of the one-particle quark Hamiltonian #, with energies £, . After a
regularization, the phase can be written as
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and the induced quark stress in the field space is (there is a corresponding expression
for the regulators)
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where /, j are Lorentz indices 2nd a, & are color indices, and |n) are the eigenfunctions
of H,. The vacuum state is defined as the direct product of the quark vacuum |vac),

and the regulators |vac),: [vac): = |vac>, & |vac),. The one-particle Hamiltonian
of massless quarks has a symmetric spectrum, since the equality {H,,7,},, = 0, which
is equivalent to the condition H = — H*, holds."? We thus have F ,-”,[-’q =0 and

C, = (8y/5A) away from points in the functional space at which H, is degenerate. In
the absence of gauge anomalies, the regulators also have™’ F,, = 0, and the total Berry
connection C = C, + C,, is a purely gauge connection away from degeneracy points.

To find the chiral anomaly, we use the change of variables g— ™7,
W, g™ in the functional integral; from the condition that the regularized deter-
minant Z "#(T) not change we then find the equation d, j ;8= — 2MWysW. The
right side can evidently be generated by a global transformation with a constant ¢, so a
manifestation of the existence of an anomaly would be an invariance of Berry’s phase
under a global chiral rotation. Under a global rotation, the state vectors in the Hilbert
space transform as |vac), —e sy [vac),;|vac)y —e ™ i“Q““[vac)w, where Qs, and
Qsy are the operators of the conserved chiral charges. The charge Q;, is not a func-
tional of the external field, in contrast with Qs,, which contains an anomalous term
which is related to the mass of the regulator:

Q. = J&PxV v ¥+ 0%, (5)
where the additional term is of the standard form,
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As a result, under a global chiral rotation Berry’s phase changes by an amount
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in agreement with the expression for the anomaly. We wish to stress that, in contrast
with the situation regarding a gauge local anomaly, where we have F 30, in our
example we have run into a Bohm-Aharanov effect in field space.

If we assume that the 6 term is contained in the QCD Lagrangian,
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we find that the canonical momentum of the gauge field is 7 = (dA4 /dt) + (6g°B/
87°), where B is the magnetic field. The presence of Berry’s phase alters the canonical
momentum in the following way: #—# ' = # — i(vac|5/84 |vac). The Schridinger
equation for the gauge-invariant wave function of the ground state in a second-quan-
tized theory, ®,(A) = @(A)|vacA), is

H®(A) = €,,, Do (A) (9)
and in the Born-Oppenheimer approximation the Schrédinger equation for ¢ (A) con-
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tains M, = §d ‘x(7°/2 + V). where Fis a potential-energy term. In other words., the
substitution 7— ' can be pursued if we recall that the fermions generate a term
§d *x{(dA 7/dr)yC(A) in the effective Lagrangian of the gluon field. In 7/, we make the
substitution |vac), —e™*' Nvac) . |vac), —e™ " V|vac),: here the transformation
properties of the complete vacuum wave function do not change under a global gauge
transformation. When we make this substitution, we find that an additional term is
induced in S,;; this additional term is equal to the change in the Barry’s phase:
A$(C, + C, )d A. The one-particle Hamiltonian of the quarks has a symmetric spec-
trum, so the quark phase must be quantized'': /$C d A = mn,neZ. Since 6 is an
arbitrary number, and the term induced by the quarks is 8 §d Adw,/5A = Ok, keZ {if
the contour is closed in the orbit space A(7) = [A(0) %, where g, is an element of
the gauge group with topological charge k}, in the case § # 7 we find the condition
A$C,d A = 0. The condition k = 0 corresponds directly to the vanishing of the fer-
mion determinant of massless quarks in a topologically nontrivial external field.* For a
Berry’s phase of regulator fields, there is no quantization condition, and when we take
the relation 8w,/S8A = (1/877)B into account, we find that the term which it induces
cancels out the initial (seed) 6 term.
In summary, a Hamiltonian interpretation of the independence of €,,. from fin a
theory with a massless quark has been proposed.
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