Gallium-germanium neutrino experiment and conservation of electric charge

O. V. Bychuk and V. N. Gavrin

Institute of Nuclear Research, Academy of Sciences of the USSR

(Submitted 7 June 1988)

Pis'ma Zh. Eksp. Teor. Fiz. 48, No. 3, 116–117 (10 August 1988)

A limit is imposed on the lifetime of ⁷¹Ga with respect to decay involving a violation of the conservation of electric charge. This limit can be established in a gallium-germanium neutrino experiment. The lifetime of the nuclei for which such a decay is possible is shown to be related to a possible deficiency of electrons in the universe.

Feinberg and Goldhaber were the first to point out that if two nuclei A, and A_{z+1} have a mass difference $M_{\text{nucl}}(A_z) - M_{\text{nucl}}(A_{z+1})$ which is less than the mass of an electron, the nuclide A, could be used to test the conservation of electric charge, since the decay of such a nucleus,

$$A_z \to A_{z+1} + X^0 , \qquad (1)$$

where X^0 is an electrically neutral particle or group of particles with a mass smaller than the mass difference of the nuclei A_z and A_{z+1} (e.g., γ or $\nu + \tilde{\nu}$), is not forbidden by anything except conservation of electric charge.

One such nuclues is² ⁷¹Ga, which is of particular interest in connection with two gallium-germanium experiments which are currently being set up to detect solar neutrinos.^{3,4} The results of these experiments will substantially improve the limit on the half-life of the decay of ⁷¹Ga in reaction (1) from the value found in Ref. 5. For example, if the measured effect is the value predicted by the standard solar model⁶ without boron neutrinos, which are not observed in a chlorine-argon experiment, this limit would be

$$T_{1/2}(^{71}\,\text{Ga}) \ge 2 \times 10^{26} \,\text{yr}.$$

The nucleus A_{z+1} which is formed in reaction (1) decays back into A_z :

$$A_{z+1} + e^- \rightarrow A_z + \nu_e , \qquad (2)$$

The set of processes (1), (2) should result in a buildup of a number of protons in excess of the number of electrons. Over the lifetime of the universe ($\sim 2 \times 10^{10}$ yr), this excess would be

$$\delta q = \frac{N_p - N_e}{N_p} \approx 10^{10} \frac{\epsilon(A_z)}{\mu(A_z)} \frac{1}{T_{1/2}(A_z)}$$
 (3)

(provided that the decay half-life of the nuclide A_{z+1} is much shorter than the life-

time of the universe). In expression (3), N_p and N_c are the densities of protons and electrons in the matter of the universe, $\epsilon(A_z)$ is the weight concentration of the nuclide A_z , $\mu(A_z)$ is its molar weight in grams, and $T_{t/2}(A_z)$ is the decay half-life of the nucleus A_z in reaction (1). If an upper limit δq could be found on the deficiency of electrons in the universe in some independent way, it would be possible to establish the following limit on the decay half-life of 71 Ga:

$$T_{1/2}(^{7,1}Ga) \gtrsim \frac{0.1}{\overline{\delta q}} \text{ yr}$$
 (4)

(here and below, we are taking the nuclide abundances from Ref. 8).

If we make certain assumptions, we can establish a limit on $T_{1/2}(^{71}\text{Ga})$ which is more stringent than (4). Let us assume that the nuclear matrix element for process (1) is written as the product of an ordinary β -decay matrix element and a matrix element which does not conserve electric charge. Let us also assume that a term which violates charge conservation appears in the weak-interaction Hamiltonian in the form $\alpha J_{\mu}^{(+)} \overline{v_e} O^{\mu} v_e J_{\mu}^{(+)}$ which is the charged current of nucleons. Summing the right side of (3) over all nuclides for which reactions (1) and (2) would be possible, we can find a limitation on α^2 [cf. Eq. (54a) in Ref. 9]. An analysis shows that of the more than 20 such nuclides (41 K, 55 Mn, 71 Ga, 73 Ge, 87 Rb, 93 Nb, 97 Mo, 109 Ag, 125 Te, 131 Xe, 139 La, 145 Nd, 151 Eu, 157 Gd, 157 Gd, 159 Tb, 170 Er, 165 Ho, 179 Hf, 181 Ta, 189 Os, 193 Ir, 197 Au, 201 Hg, 204 Hg, 205 Tl) the value of δq would be dominated by 55 Mn. The 71 Ga contribution would be smaller by about an order of magnitude. The other nuclides would make negligible contributions. As a result, the following limitation is imposed on α^2 :

$$\alpha^2 \lesssim 0.5 \overline{\delta q}$$
.

For the decay half-life of 71Ga we then find

$$T_{1/2}(^{71}\text{Ga}) > 4/\overline{\delta q}. \tag{5}$$

It follows from limitation (5) that the background created in a gallium-germanium experiment due to nonconservation of electric charge should not exceed $\sim 6 \times 10^{27} \ \overline{\delta q}$ solar neutrino units, corresponding to the formation of $\sim 10^{26} \ \overline{\delta q}^{71}$ Ge atoms per day for a 60-metric-ton detector.

At the moment, the study by Barabanov *et al.*⁵ gives us our best limitation on the lifetime of ⁷¹Ga with respect to decay (1). The following upper limit can thus be set on the deficiency of electrons caused by processes (1) and (2):

$$\overline{\delta q} \lesssim 2 \times 10^{-23}$$
.

We wish to thank G. T. Zatsepin for constant and stimulating interest in this study and V. A. Rubakov and A. M. Pshukov for useful discussions.

¹G. Feinberg and M. Goldhaber, Proc. Nat. Acad. Sci. USA 45, 1301 (1959).

²V. A. Kuzmin, Preprint A-62, Lebedev Physical Inst., 1964.

³W. Hampel, "The gallium solar neutrino detector," in: Proceedings of AIP Conference. Solar Neutrino and

Neutrino Astronomy, Homestake, 1984 (ed. M. L. Cherry, K. Lande, and W. A. Fowler), Vol. 126, AIP, New York, 1985, p. 162.

¹I. R. Barabanov, E. P. Veretenkin, V. N. Gavrin *et al.*, "Pilot installation of the gallium-germanium solar neutrino telescope," in: Proceedings of AIP Conference. Solar Neutrino and Neutrino Astronomy, Home-

stake, 1984 (ed. M. L. Cherry, K. Lande, and W. A. Fowler), Vol. 126, AIP, New York, 1985, p. 175. L. R. Barabanov, E. P. Veretenkin, V. N. Gavrin *et al.*, Pis'ma Zh. Eksp. Teor. Fiz. **32**, 384 (1980) [JETP]

⁶J. N. Bahcall and R. K. Ulrich, Inst. for Advanced Study Preprint IASSNS-AST 87/1, 1987.

⁷J. K. Rowley, B. T. Cleveland, and R. Davis Jr., Astrophys. J. Lett. **292**, L79 (1985).

⁸A. G. W. Cameron, in: Essays in Nuclear Astrophysics (ed. C. Barnes *et al.*), Cambridge Univ. Press, 1982.

⁹J. N. Bahcall, Rev. Mod. Phys. **50**, 881 (1978).

Translated by Dave Parsons

Lett. 32, 359 (1980)].