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The switch to a kinetic description of the plasma results in a growth of negative-
energy waves at the boundary of a vortex.

The possible role of vortices in the mixing of a plasma has stimulated a stream of
papers on vortex theory. Many types of vortices have turned out to be stable in the
hydrodynamic description, i.e., if the velocity spread of the particles is ignored (see the
reviews'™). Most stable vortices realize a maximum of the energy at fixed values of the
other integrals of motion, and it has accordingly been suggested that incorporating
dissipation may result in a growth of vortices." However, incorporating dissipation
results primarily in an excitation of oscillations of the boundary of a vortex which have
a negative energy (with respect to the energy of an unperturbed vortex), and if there is
a dissipation they grow, rather than being damped. In addition to collisional dissipa-
tion, an instability may result from a resonant absorption of energy by hot particles,
i.e., Landau damping. A finite Larmor radius was taken into account in Ref. 4, but in
an approximation in which this factor does not yet introduce any new effects.

In the present letter we wish to examine an instability caused by Landau damp-
ing. We assume that the following conditions hold: a) There are few hot particles, and
they do not affect the polarization or frequency of the natural oscillation modes of the
boundary of a vortex. b) The nonuniformity of the plasma in its unperturbed state can
be ignored in the calculation of the resonant energy absorption by hot particles.

The procedure for calculating the instability of a natural mode is as follows. We
first find the frequency w, the energy W, and the electric field of the natural mode in
the hydrodynamic approximation. We then calculate the rate of resonant energy ab-
sorption by hot particles in the field which has been found, W. The instability growth
rate y is

y=— WW. (H

We will demonstrate the feasibility of this procedure by calculating the instability
of a two-dimensional electron vortex in which the vorticity [the curl of the generalized
angular momentum of the electrons, curlP = curlmv,) + eH/c] is e, ({) + 6Q) inside
a vortex and e, () — 80) outside it.’

The equations of ideal electron MD are used as the equations for the cold parti-
cles.’ In the two-dimensional case in which we are interested here, the vorticity is
Q =¢,0(x,y), and the equation for Q takes the form of an equation describing a
freezing of ) in the electrons:
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We restrict the discussion to the case of perturbations whose wavelength is short
in comparison with the size of the vortex. We direct the y axis along the boundary of
the vortex, and the x axis along the perpendicular to this boundary. We seek natural
oscillation modes in the form of sinusoidal displacements of the vortex boundary. We
then have (r,t) = Q,(r) + 2T", AQ sin (ky — wt), where « is the wave number, and
I, is the amplitude of the excursion of the vortex boundary from its equilibrium
position (I' .« <1). Substituting Q(r, ¢) into (2), we find

where 1% = ¢¥/w

1

Using the equations of electron MHD, we find the electric field of the natural mode.
For simplicity we assume 5Q €. The vortex part of the field is then much weaker
than the potential part, and the electric potential is
3 Qexp(~ x|V +1°2) 1ey
: — e
me+1+ k2N
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It is not difficult to show that the energy of the electric field of the oscillations is small
in comparison with the magnetic field energy and the kinetic energy of the electrons.
The sum of the latter can be expressed in terms of the frozen-in quantity Q(r, #):

W= c2/(8me*)f Qr,t) Q{, t)Ko lr~1" |/ N)d?*r'd3r , (5)

where K|, is a modified Bessel function. Substituting in Q(r, ¢), we find the energy of
the natural oscillation mode of a plane vortex:

1 6Q )y 1
W = 2 —-1). 6
W= ST n) (e D (6)

Here S is the surface area of the boundary between regions with different vorticities.

Using the potential which we have calculated, let us now find the power absorbed
by the resonant particles. The effect of the magnetic field on the hot particles can be
ignored under the condition r, > 1. If, in accordance with condition b), we ignore the
nonuniformity of the hot-particle distribution in the unperturbed vortex, then we can
write (Ref. 5, for example)

W e ok )P (@, Kk )
(211')4 ( , 3

where @(k) = f@(r,t)e *d’r, and €”(w,k) is the imaginary part of the dielectric
constant of the plasma. If the hot particles are isotropic (we are thinking of particles
which are responsible for a resonant absorption of energy; they could be electrons or
ions), we find, using (1), (5), and (7),

207 JETP Lett,, Vol. 48, No. 4, 25 August 1988 fvoninetal. 207



Yy =J F' (v)y(adv, (8)

L Q2 o2 VI1+ KA (V14N ~ )t

v () = Z,ﬂ-z m? ‘*’;e A+ A2 W)V KENE + WP A2 u?

» 9

where @ is the plasma frequency of the hot particles, and F(v) is their distribution
function projected onto an arbitrary axis.

In using the expression “universal instability” we have attempted to emphasize
the similarity between the instability found here and a drift instability.® In each case,
the energy source is a nonuniformity (in our case, caused by the vortex) which leads
to the existence of negative-energy waves. The dissipation required for the growth can
almost always be found.
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